+0  
 
+1
4
3
avatar+22 

Find the range of the function

\(h(x)=\frac{5x^2+20x+33}{x^2+4x+7}\)
Enter your answer in interval notation.

 Mar 29, 2025
 #2
avatar+22 
+2

Ok, I found the answer.

We can use polynomial long division to simplify: 

\(\frac{5x^2+20x+33}{x^2+4x+7}=5-\frac{2}{x^2+4x+7}\)

Then, h(x)<5, and we can find the minimum by completing the square on the quadratic.

\(x^2+4x+7=(x+2)^2+3\),

so the minimum is 3. Hence, the least possible value of h(x) is \(\frac{13}{3}\), and the range is \(\boxed{h(x)\in[\frac{13}{3},5)}\)

 Mar 30, 2025

1 Online Users