+0  
 
0
228
4
avatar

f(x) = tan^-1(2x+1)

Guest Dec 6, 2014

Best Answer 

 #4
avatar+18827 
+10

f(x) = tan^-1(2x+1)      f(x)'  ?

$$\tan[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ] = 2x+1 \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\
(1+\tan^2(\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ) )
\times
\left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'
= 2
\\\\
\left[ 1+(2x+1)^2} \right]
\times
\left[\textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'
= 2 \\\\
\boxed{ \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'
= \frac{2} {1+(2x+1)^2} } }$$

heureka  Dec 8, 2014
Sort: 

4+0 Answers

 #1
avatar+26397 
+5

Derivative

.

Alan  Dec 6, 2014
 #2
avatar
+10

Thanks for your answer. I really would love some explanation and if you can show me how to solve this problem by using u-substituiton I would appreciate.

 

Thanks again. :)

Guest Dec 6, 2014
 #3
avatar+91434 
+10

$$\\y=tan^{-1}(2x+1)\\\\
Let\;\; u=2x+1\qquad \frac{du}{dx}=2\\\\
y=tan^{-1}\;u\\\\
u=tan\;y\\\\
\frac{du}{dy}=sec^2y\\\\
\frac{dy}{du}=\frac{1}{sec^2y}\\\\$$

 

--------

 

$$\\y=tan^{-1}(2x+1)\\\\
Let\;u=2x+1\qquad \frac{du}{dx}=2\\\\
y=tan^{-1}u\\\\
u=tan\;y\\\\
\frac{du}{dy}=sec^2y\\\\
\frac{dy}{du}=\frac{1}{sec^2y}\\\\
\begin{array}{rll}
\frac{dy}{dx}&=&\frac{dy}{du}\times\frac{du}{dx}\\\\
&=&\frac{1}{sec^2y}\times 2\\\\
&=&\frac{2}{sec^2y}\\\\
&=&$refer to explanation below to help get to next step$\\\\
&=&\frac{2}{1+u^2}\\\\
&=&\frac{2}{1+(2x+1)^2}\\\\
&=&\frac{2}{4x^2+4x+2}\\\\
&=&\frac{1}{2x^2+2x+1}\\\\
\end{array}$$

 

--------------------

 tan y = u/1

Melody  Dec 7, 2014
 #4
avatar+18827 
+10
Best Answer

f(x) = tan^-1(2x+1)      f(x)'  ?

$$\tan[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ] = 2x+1 \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\
(1+\tan^2(\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ) )
\times
\left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'
= 2
\\\\
\left[ 1+(2x+1)^2} \right]
\times
\left[\textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'
= 2 \\\\
\boxed{ \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'
= \frac{2} {1+(2x+1)^2} } }$$

heureka  Dec 8, 2014

5 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details