+0  
 
0
441
4
avatar

f(x) = tan^-1(2x+1)

Guest Dec 6, 2014

Best Answer 

 #4
avatar+20025 
+10

f(x) = tan^-1(2x+1)      f(x)'  ?

$$\tan[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ] = 2x+1 \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\
(1+\tan^2(\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ) )
\times
\left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'
= 2
\\\\
\left[ 1+(2x+1)^2} \right]
\times
\left[\textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'
= 2 \\\\
\boxed{ \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'
= \frac{2} {1+(2x+1)^2} } }$$

heureka  Dec 8, 2014
 #1
avatar+27057 
+5

Derivative

.

Alan  Dec 6, 2014
 #2
avatar
+10

Thanks for your answer. I really would love some explanation and if you can show me how to solve this problem by using u-substituiton I would appreciate.

 

Thanks again. :)

Guest Dec 6, 2014
 #3
avatar+93683 
+10

$$\\y=tan^{-1}(2x+1)\\\\
Let\;\; u=2x+1\qquad \frac{du}{dx}=2\\\\
y=tan^{-1}\;u\\\\
u=tan\;y\\\\
\frac{du}{dy}=sec^2y\\\\
\frac{dy}{du}=\frac{1}{sec^2y}\\\\$$

 

--------

 

$$\\y=tan^{-1}(2x+1)\\\\
Let\;u=2x+1\qquad \frac{du}{dx}=2\\\\
y=tan^{-1}u\\\\
u=tan\;y\\\\
\frac{du}{dy}=sec^2y\\\\
\frac{dy}{du}=\frac{1}{sec^2y}\\\\
\begin{array}{rll}
\frac{dy}{dx}&=&\frac{dy}{du}\times\frac{du}{dx}\\\\
&=&\frac{1}{sec^2y}\times 2\\\\
&=&\frac{2}{sec^2y}\\\\
&=&$refer to explanation below to help get to next step$\\\\
&=&\frac{2}{1+u^2}\\\\
&=&\frac{2}{1+(2x+1)^2}\\\\
&=&\frac{2}{4x^2+4x+2}\\\\
&=&\frac{1}{2x^2+2x+1}\\\\
\end{array}$$

 

--------------------

 tan y = u/1

Melody  Dec 7, 2014
 #4
avatar+20025 
+10
Best Answer

f(x) = tan^-1(2x+1)      f(x)'  ?

$$\tan[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ] = 2x+1 \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\
(1+\tan^2(\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ) )
\times
\left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'
= 2
\\\\
\left[ 1+(2x+1)^2} \right]
\times
\left[\textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'
= 2 \\\\
\boxed{ \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'
= \frac{2} {1+(2x+1)^2} } }$$

heureka  Dec 8, 2014

20 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.