We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
123
2
avatar

Please help. Thank you!

 Feb 4, 2019
 #1
avatar+103121 
+1

First one

 

y = -4x + 1       subtract  1 tfrom both sides

 

y  - 1 = - 4x     divide both sides by -4

 

y - 1 / -4  = x

 

(1 - y) / 4   = x      swap x and y

 

(1 - x) / 4 = y

 

-(1/4)x  + 1/4  =  y = f(x)    so....they are inverses

 

 

Second one

 

y =   [ -20 + 8x  ] / 5         multiply both sides by 5

 

5y = -20 + 8x               add 20 to both sides

 

5y + 20  =  8x              divide both sides by  8

 

[ 5y + 20 ] / 8  =   x     swap x and y

 

[5x + 20 ] / 8   = y   = f(x)       .....also inverses

 

 

cool cool cool

 Feb 4, 2019
 #2
avatar+23071 
+6

Inverse

 

1.
\(\begin{array}{|rcll|} \hline g(f(x)) & \overset{?}{=} & x \quad | \quad f(x) = -\dfrac{1}{4}x + \dfrac{1}{4} \\ g(-\dfrac{1}{4}x + \dfrac{1}{4} ) & \overset{?}{=} & x \\ -4\left( -\dfrac{1}{4}x + \dfrac{1}{4} \right) +1 & \overset{?}{=} & x \\ x-1+1 & \overset{?}{=} & x \\ x & \overset{!}{=} & x \quad \text{the functions are inverses }\\ \hline \end{array}\)

 

2.
\(\begin{array}{|rcll|} \hline g(f(x)) & \overset{?}{=} & x \quad | \quad f(x) = \dfrac{5x+20}{8} \\ g(\dfrac{5x+20}{8}) & \overset{?}{=} & x \\ \dfrac{-20+8\left( \dfrac{5x+20}{8} \right) }{5}& \overset{?}{=} & x \\ -4 + \dfrac{5x+20}{5} & \overset{?}{=} & x \\ -4 + x + 4 & \overset{?}{=} & x \\ x & \overset{!}{=} & x \quad \text{the functions are inverses }\\ \hline \end{array}\)

 

laugh

 Feb 5, 2019

23 Online Users

avatar
avatar
avatar
avatar
avatar