+0  
 
0
638
2
avatar

y=-4x+14, -x+4y=14

 Nov 8, 2015

Best Answer 

 #2
avatar+42 
+5

Look at the gradients(\(M\)) for both lines

Line 1 gradient = -4 = \(M_1\)

Line 2 gradient = 1 / 4 = \(M_2\)

 

Definition for a perpendicular line is when the gradient(\(M\)) satisfies:

\(\frac{-1}{M_1}\) is perpendicular to \(M_2\)

 Nov 9, 2015
 #1
avatar
+3

IT IS NEITHER!! THE LINES CRISS-CROSS.

 

Here is how you plot it:ContourPlot[{y = 14 - 4 x, -x + 4 y = 14}, {x, 25/17, 59/17}, {y, 53/17, 87/17}]

 

You may practice graphing it here:https://www.desmos.com/calculator

 Nov 8, 2015
 #2
avatar+42 
+5
Best Answer

Look at the gradients(\(M\)) for both lines

Line 1 gradient = -4 = \(M_1\)

Line 2 gradient = 1 / 4 = \(M_2\)

 

Definition for a perpendicular line is when the gradient(\(M\)) satisfies:

\(\frac{-1}{M_1}\) is perpendicular to \(M_2\)

Maximillian Nov 9, 2015

1 Online Users

avatar