+0  
 
0
94
1
avatar

Is it possible to simplify 5+sqrt(19)+sqrt(147/8)

 May 23, 2021
 #1
avatar+114485 
+1

5+sqrt(19)+sqrt(147/8)

 

\(5+\sqrt{19}+\sqrt{\frac{147}{8}}\\~\\ 5+\sqrt{19}+\sqrt{\frac{147}{4*2}}\\~\\ 5+\sqrt{19}+\frac{1}{2}\sqrt{\frac{147}{2}}\\~\\ 5+\sqrt{19}+\frac{1}{2}\sqrt{\frac{147}{2}}\frac{\sqrt2}{\sqrt2}\\~\\ 5+\sqrt{19}+\frac{1}{2}\frac{\sqrt{147}}{\sqrt2}\frac{\sqrt2}{\sqrt2}\\~\\ 5+\sqrt{19}+\frac{1}{2}\frac{\sqrt{147*2}}{2}\\~\\ etc\)

That is not finished.  If you go to the 'HOME' page on this site you will find a calculator.

Type in  factor(147)   then press equals, you will get the factors of 147 and you can simplify some more.

 

Please let guest asker finish this of him/her self.

 May 23, 2021

24 Online Users