+0  
 
0
269
2
avatar+314 

Is there a "distributive property of division"??

Like as in this question:

(-3)2n+1 /(27*(-3)2n)  n is a positive whole number.

Can you do this:

((-3)2n+1 /27)*((-3)2n+1 /(-3)2n) ??????

THANK YOU

ISmellGood  Aug 26, 2017
 #1
avatar+87301 
+2

(-3)2n+1 /(27*(-3)2n)

 

Note that we can write this as

 

(-3)2n+1 / (-3)2n   * ( 1 /27 )

 

And remember that we have the property that    am / an  = a ( m - n)

 

So   ...we have....

 

(-3) [ (2n + 1) - 2n ]  *  (1/27)  =

 

(-3)1  * (1/27)  =

 

(-3)  / 27  =

 

-1 / 9

 

 

cool cool cool

CPhill  Aug 26, 2017
 #2
avatar+7155 
+4

Also...

 

\(\frac{(-3)^{2n+1}}{27\,\cdot\,(-3)^{2n}}=\frac{(-3)^{2n+1}}{27}\,\cdot\,\frac{(-3)^{2n+1}}{(-3)^{2n}}\)

 

This is not true.

If you multiply the two fractions on the right side together, you will get   \(\frac{[ (-3)^{2n+1})]^2}{27\,\cdot\,(-3)^{2n}}\)     .

 

\(\frac{a}{bc}\,\neq\,\frac{a}{b}\,\cdot\,\frac{a}{c}\)

 

 

But..you can distribute division the same as you distribute multiplication, like this....

 

\(\frac{8 + 6 +10}{2}=\frac12(8+6+10)\,=\,(\frac12)(8)+(\frac12)(6)+(\frac12)(10)\,=\,4+3+5\,=\,12\)     smiley

hectictar  Aug 26, 2017
edited by hectictar  Aug 27, 2017

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.