+0  
 
+5
516
5
avatar

2,44=12500x^2/(3+x)^4*(1-x)*(2-2x)^2

How can I easily get x? Thanks

 Mar 31, 2016
 #1
avatar
0

2,44=12500x^2/(3+x)^4*(1-x)*(2-2x)^2

 

2.44=12500x^2/[x^4+12 x^3+54 x^2+108 x+81]*(1 - x)*[4 x^2-8 x+4], solve for x. OK, guys and gals: I have expanded it as much as I could!  See if you can perform some magic on it!. Thanks.

 Mar 31, 2016
 #2
avatar+118723 
0

2,44=12500x^2/(3+x)^4*(1-x)*(2-2x)^2

 

\(2.44=\frac{12500x^2}{(3+x)^4}*(1-x)*(2-2x)^2\\ 2.44=\frac{12500x^2}{(3+x)^4}*(1-x)*4(1-x)^2\\ 2.44=\frac{12500x^2}{(3+x)^4}*4(1-x)^3 \qquad x\ne-3\\ 0.61=\frac{12500x^2}{(3+x)^4}(1-x)^3 \\ 0.61*(3+x)^4=12500x^2(1-x)^3 \\ 0.61*(x^4+4*3x^3+6*9x^2+4*27x+81)=12500x^2(-x^3+3x^2-3x+27) \\ \mbox{ok I'm bored now- got better things to do....} \)

 Mar 31, 2016
 #3
avatar
0

P.S. This is taylor-made for "heureka"!!.

 Mar 31, 2016
 #5
avatar+118723 
0

Heureka might have better things to do too ;)

Melody  Mar 31, 2016
 #4
avatar
+5

The "mighty" Wolftram/Alpha engine gives these 3 "real" values for x:

x ~~ -0.0558159
x ~~ 0.0740962
x ~~ 0.740807

 Mar 31, 2016

3 Online Users