+0

# LAST ONE plz help some 1

+2
190
2

Find the non-zero value of c  for which there is exactly one positive value of  b for which there is one solution to the equation $$x^2 + \left(b + \frac 1b\right)x + c = 0$$

Jun 1, 2019
edited by Guest  Jun 1, 2019

#1
+2

There is only one solution for  x  when the discrimant is  0 , that is, when...

$$(b+\frac1b)^2-4(1)(c)\ =\ 0\\~\\ (b+\frac1b)^2-4c\ =\ 0\\~\\ (b+\frac1b)(b+\frac1b)-4c\ =\ 0\\~\\ b^2+2+\frac{1}{b^2}-4c\ =\ 0\\~\\ b^2+(2-4c)+\frac{1}{b^2}\ =\ 0\\~\\ b^4+(2-4c)b^2+1\ =\ 0\qquad\text{Let}\qquad u=b^2\\~\\ u^2+(2-4c)u+1\ =\ 0$$

There is only one solution for  u, and thus only one positive value of  b ,  when...

$$(2-4c)^2-4\ =\ 0\\~\\ (2-4c)^2\ =\ 4\\~\\ 2-4c\ =\ 2\qquad\text{or}\qquad2-4c\ =\ -2\\~\\ c\ =\ 0\phantom{2-4}\qquad\text{or}\qquad c\ =\ 1$$

The non-zero value of  c  is  1 .

----------------------------------------

To check this answer, let's find the values of  b  for which   $$x^2+(b+\frac1b)x+1=0$$   has only one solution.

$$x^2+(b+\frac1b)x+1=0$$     has only one solution when....

$$(b+\frac1b)^2-4\ =\ 0\\~\\ b^2-2+\frac{1}{b^2}\ =\ 0\\~\\ b^4-2b^2+1\ =\ 0\\~\\ (b^2-1)^2\ =\ 0\\~\\ b\ =\ \pm1$$

There is only one positive value of  b  for which there is one solution to the equation  $$x^2+(b+\frac1b)x+1=0$$

___

Jun 1, 2019
#2
0

The exact same question has been asked here before.

https://web2.0calc.com/questions/help_77926

Jun 1, 2019