+0  
 
0
837
6
avatar+280 

So this is as far as i have got for this particular problem. I am scared to submit it because i think im forgeting some rule or conjuction. Anyway here is what i got.

 

sin A 4/5

sin B 3/5      I got these from the pythagorean theorem.

 

For tan A i did

4/5 / 3/5 = 4/5 x 5/3 = tan A 4/3

For tan B i did

3/5 / 25/5 = tan B 35/10

 

Im am confused about inserting the values in the formula. Im getting too big of answers, so someone please show me how you do this problem. This is the last one and them im going to sleep for 6 hours. 

 Mar 18, 2017
 #1
avatar+23252 
0

I get a different value for sin(B).

If  cos(B)  =  ( 2sqrt(5) ) / 5, I draw the reference right triangle to have an adjacent side (x-side) of 2sqrt(5) and hypotenuse of 5.

Then, using the Pythagorean Theorem, I get the opposite side (y-side) to have a value of sqrt(5),

giving a value for sin(B) to be sqrt(5) / 5.

 Mar 18, 2017
 #3
avatar+280 
0

is the answer 11?

Veteran  Mar 18, 2017
 #2
avatar
0

Yes, Like gene3141 I get:

Sin(B) =1/sqrt(5), which is the same as: Sqrt(5) / 5

 Mar 18, 2017
 #4
avatar+280 
0

11/2 is the answer. You dont even know what kind of values i ended up trying to convert for the formula. All because of a little error. thanks guys

 Mar 18, 2017
 #5
avatar
0

Are you using this formula: tan(A + B) = sin(A + B) / cos(A + B).

 Mar 18, 2017
 #6
avatar+129846 
0

sin A  = 4/5

sin B   =   sqrt (r^2 - x^2) / r  =  sqrt (5 - 4) / sqrt (5)    =   1/sqrt (5)

 

tan A    =   [ 4/5[ / [3/5] =   4/3

tan B    =  [1/sqrt(5) / [ 2/sqrt (5)]  =  1/2

 

tan (A + B)   =   [ tanA + tanB] / [1 - tanA*tanB]  =   [ (4/3) + (1/2)] / [ 1 - (4/3)(1/2) ] =

 

[11/6] / [ 1 - 4/6]  =    [11/6] / [ 2/6]  =   11/2

 

 

cool cool cool

 Mar 18, 2017

0 Online Users