+0  
 
-2
66
2
avatar

In triangle $ABC,$ $M$ is the midpoint of \(\overline{AB}\). Let $D$ be the point on \(\overline{BC}\) such that \(\overline{AD}\) bisects \(\angle BAC\), and let the perpendicular bisector of \(\overline{AB}\) intersect \(\overline{AD}\) at $E.$ If $AB = 44$ and $ME = 12,$ then find the distance from $E$ to line $AC.$

 Apr 16, 2020
 #1
avatar
0

By the angle bisector theorem, the distance from E to line AC is 24.

 Apr 16, 2020
 #2
avatar+109524 
0

Why should anyone bother to explain when you cannot be bothered to present your question properly?

 Apr 16, 2020

25 Online Users

avatar
avatar
avatar
avatar