+0  
 
0
40
3
avatar+462 

here is the question

shreyas1  Oct 14, 2018
 #2
avatar+90968 
+1

Call O the center of the circle.....draw radius OC perpendicular  to AB, and connect OB  and OA

 

In triangle OBC...angle OBC  = 30°  and angle BOC  = 60°

So....BC  = 6√3  cm

 

And in triangle OAC  = 15“  and angle COA  = 75°

Using the law of sines

 

CA / sin 75  = OC / sin 15

 

CA /  sin (30 + 45)  = 6 / sin (45 -30)

 

CA  =  6 sin (30 + 45)  / sin (45 - 30)

 

CA = 6 [ sin 30cos 45 + sin 45cos30 ] / [ sin 45cos 30 - sin 30 cos 45 ]

 

CA = 6  [ 1/2 * √2/2  + √2/2 * √3/2 ]  / [ √2/2 * √3 / 2 * 1/2 * √2/2 ]

 

CA = 6 [ √2/4 + √6/4 ] / [ √6 / 4  - √2/4]

 

CA = 6 [ √6 + √2 ] / [√6  - √2]

 

CA  = 6 [ 6 + 2√12 + 2 ] / [6 - 2]

 

CA = 6 [8 + 4√3 ] / [ 4]

 

CA = (3/2) [ 8 + 4√3]  =  3 [ 4 + 2√3]  = 12 + 6√3  cm

 

So....AB = BC + CA  =  6√3  + 12 + 6√3  =   12 + 12√3  cm 

 

 

cool cool cool

CPhill  Oct 14, 2018
edited by CPhill  Oct 14, 2018
 #3
avatar+462 
+1

Thank you Chris 

shreyas1  Oct 14, 2018

31 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.