+0

# Let $a,b$ be real numbers, and let $x_1,x_2$ be the roots of the quadratic equation $x^2+ax+b=0$. Prove that if $x_1,x_2$ are real and nonze

0
1192
1

Let $a,b$ be real numbers, and let $x_1,x_2$ be the roots of the quadratic equation $x^2+ax+b=0$. Prove that if $x_1,x_2$ are real and nonzero, $\frac 1{x_1}+\frac 1{x_2}<1$, and $b>0$, then $|a+2|>2$.

Jan 12, 2018

#1
+1

$$x_1,x_2$$

$$|a+2|>2$$

$$\frac 1{x_1}+\frac 1{x_2}<1$$

The sum of the roots =   -a

And since  the  product of the roots  = b  >  0.....this implies that both roots have the same sign

Let  x1  , x2   be the positive roots

So  -x1, -x2  are the negative roots

The  sum of the negative roots  results in

-x1 +   -x2  =   -a

- [ x1  + x2  ] =  -a      ⇒  x1  +  x2  = a

Therefore......a  in this  case   >  0  so

l a + 2  l  >  2    is satisfied

Now....if both positive roots   are   >  0   but  ≤ 2   ....then.....

1 /x1  +  1/x2   ≥ 1         but this violates the condition that  1/x1  + 1/x2  <  1

Therefore   x1, x2   must  be  >  2

Therefore

x1  + x2  =  -a

- [ x1  + x2  ]   =  a

But.....since   x1, x2  >  2   then their sum  must be  > 4

So....this implies that

[x1 + x2]  >  4

- [ x1  + x2 ]  <  -4     ⇒    a  <  - 4

So.....in the case of two positive roots  .......

l a  + 2 l  >  2     is true

So......

l a  + 2  l  >  2   is proved for both positive and negative roots   Jan 15, 2018
edited by CPhill  Jan 15, 2018