+0  
 
0
71
3
avatar

Let a be a real number for which there exists a unique value of b such that the quadratic equation x^2 + 2bx + (a-b) = 0 has one real solution. Find a.

 Mar 25, 2020
 #1
avatar+9483 
+1

Let a be a real number for which there exists a unique value of b such that the quadratic equation x^2 + 2bx + (a-b) = 0 has one real solution. Find a.

 

Hello Guest!

 

a=b

 

\(x^2 + 2bx + (a-b) = 0 \\ x^2 + 2bx + (b-b) = 0 \\ x^2+2bx=0\\ x(x+2b)=0 \)

 

\(x_1=0\\ x_2=-2b\)

laugh  !

 Mar 25, 2020
 #2
avatar
0

I apologize for my lack of intelligence, but what is a?

Guest Mar 25, 2020
 #3
avatar+9483 
+1

I apologize for my lack of intelligence, but what is a?

 

       a=b

 

laugh  !

asinus  Mar 25, 2020

5 Online Users

avatar