+0  
 
0
52
2
avatar

Let  \($f(x)=\left\lfloor\left(-\frac58\right)^x\right\rfloor$\) be a function that is defined for all values of \(x\) in \([0,\infty)\) such that \(f(x)\) is a real number. How many distinct values exist in the range of \(f(x)\)?

 Feb 8, 2022
 #1
avatar
0

Please reply quickly.

 Feb 8, 2022
 #2
avatar
0

There are only two values in the range, -1 and 0.

 Feb 8, 2022

16 Online Users