#1**+2 **

**Let \(A\) be a matrix, and let \(x\) and \(y\) be vectors such that neither is a scalar multiple of the other and such that \(\mathbf{A} \mathbf{x} = \mathbf{y},\ \mathbf{A} \mathbf{y} = \mathbf{x} + 2\mathbf{y}\). Then we have that \(\mathbf{A}^{-1} \mathbf{x} = a \mathbf{x} + b\mathbf{y}\) for some scalars \(a\) and \(b\). Find \(a\) and \(b\).**

**\(\begin{array}{|rcll|} \hline \mathbf{A} \mathbf{x} &=& \mathbf{y} \quad &| \quad \times \mathbf{A}^{-1} \\ \mathbf{A}^{-1}\mathbf{A}\mathbf{x} &=& \mathbf{A}^{-1} \mathbf{y} \quad &| \quad \mathbf{A}^{-1}\mathbf{A} = \text{Identity matrix} \\ \mathbf{x} &=& \mathbf{A}^{-1}\mathbf{y} \\\\ \hline \mathbf{A} \mathbf{y} &=& \mathbf{x} + 2\mathbf{y} \quad &| \quad \times \mathbf{A}^{-1} \\ \mathbf{A}^{-1}\mathbf{A}\mathbf{y} &=& \mathbf{A}^{-1}\mathbf{x} + 2\mathbf{A}^{-1} \mathbf{y} \quad &| \quad \mathbf{A}^{-1}\mathbf{A} = \text{Identity matrix} \\ \mathbf{y} &=& \mathbf{A}^{-1}\mathbf{x} + 2\mathbf{A}^{-1} \mathbf{y} \quad &| \quad \mathbf{A}^{-1}\mathbf{y} = \mathbf{x} \\ \mathbf{y} &=& \mathbf{A}^{-1}\mathbf{x} + 2\mathbf{x} \\ \mathbf{A}^{-1}\mathbf{x} &=& -2\mathbf{x}+\mathbf{y} \\ \hline \end{array}\)**

\(\mathbf{a=-2,\ b=1} \)

heureka Mar 18, 2020