We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
73
1
avatar

Let \((a_1,b_1),(a_2,b_2),\) \(\dots,\) \((a_n,b_n)\) be the ordered pairs \((a,b)\) of real numbers such that the polynomial \(p(x) = (x^2 + ax + b)^2 +a(x^2 + ax + b) - b\) has exactly one real root and no nonreal complex roots. Find \(a_1 + b_1 + a_2 + b_2 + \dots + a_n + b_n.\)

 Apr 22, 2019
 #1
avatar
0

The answer is 7/2.

 Nov 29, 2019

11 Online Users

avatar