We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
564
1
avatar+211 

Let $f(n)$ be the sum of the positive integer divisors of $n$. For how many values of $n$, where $1 \le n \le 25$, is $f(n)$ prime?

 Apr 20, 2018
 #1
avatar+22162 
+2

Let $f(n)$ be the sum of the positive integer divisors of $n$. For how many values of $n$,

where $1 \le n \le 25$, is $f(n)$ prime?

 

 

\(\begin{array}{|r|rcr|c|} \hline n & && f(n) & \text{prime} \\ \hline 1 & 1 &=&1 & \\ 2 & 1+2&=&3 & \checkmark \\ 3 & 1+3&=&4 & \\ 4 & 1+2+4&=&7 & \checkmark \\ 5 & 1+5&=&6 & \\ 6 & 1+2+3+6&=&12 & \\ 7 & 1+7&=&8 & \\ 8 & 1+2+4+8&=&15 & \\ 9 & 1+3+9&=&13 & \checkmark \\ 10 & 1+2+5+10&=&18 & \\ 11 & 1+11 &=& 12 & \\ 12 & 1+2+3+4+6+12 &=& 28 & \\ 13 & 1+13 &=& 14 & \\ 14 & 1+2+7+14 &=& 24 & \\ 15 & 1+3+5+15 &=& 24 & \\ 16 & 1+2+4+8+16 &=& 31 & \checkmark \\ 17 & 1+17 &=& 18 & \\ 18 & 1+2+3+6+9+18 &=& 39 & \\ 19 & 1+19 &=& 20 & \\ 20 & 1+2+4+5+10+20 &=& 42 & \\ 21 & 1+3+7+21 &=& 32 & \\ 22 & 1+2+11+22 &=& 36 & \\ 23 & 1+23 &=& 24 & \\ 24 & 1+2+3+4+6+8+12+24 &=& 60 & \\ 25 & 1+5+25 &=& 31 & \checkmark \\ \hline \text{sum } & &&& 5 \\ \hline \end{array}\)

 

laugh

 Apr 20, 2018

7 Online Users