+0  
 
0
305
2
avatar

Let \[ f(x) = \begin{cases} -x^2 & \text{if } x \geq 0,\\ x+8& \text{if } x <0. \end{cases} \]Compute $f(f(f(f(f(1))))).$

Guest Aug 29, 2017

Best Answer 

 #1
avatar+19480 
+2

Let \[ f(x) = \begin{cases} -x^2 & \text{if } x \geq 0,\\ x+8& \text{if } x <0. \end{cases} \]Compute $f(f(f(f(f(1))))).$

 

\(\text{Let } \left[ f(x) = \begin{cases} -x^2 & \text{if } x \geq 0,\\ x+8& \text{if } x <0. \end{cases} \right] \\ \text{Compute } f(f(f(f(f(1))))). \)

 

\(\begin{array}{|llcll|} \hline x=1 \quad & f(1) = -1^2 &=& -1 & | \quad (x\ge 0) \\ x=-1 \quad & f(-1) = -1+8 &=& 7 & | \quad (x \lt 0) \\ x=7 \quad & f(7) = -7^2 &=& -49 & | \quad (x\ge 0) \\ x=-49 \quad & f(-49) = -49+8 &=& -41 & | \quad (x \lt 0) \\ x=-41 \quad & f(-41) = -41+8 &=& -33 & | \quad (x \lt 0) \\ \hline \end{array} \)

 

\(f(f(f(f(f(1))))) = -33\)

 

laugh

heureka  Aug 29, 2017
 #1
avatar+19480 
+2
Best Answer

Let \[ f(x) = \begin{cases} -x^2 & \text{if } x \geq 0,\\ x+8& \text{if } x <0. \end{cases} \]Compute $f(f(f(f(f(1))))).$

 

\(\text{Let } \left[ f(x) = \begin{cases} -x^2 & \text{if } x \geq 0,\\ x+8& \text{if } x <0. \end{cases} \right] \\ \text{Compute } f(f(f(f(f(1))))). \)

 

\(\begin{array}{|llcll|} \hline x=1 \quad & f(1) = -1^2 &=& -1 & | \quad (x\ge 0) \\ x=-1 \quad & f(-1) = -1+8 &=& 7 & | \quad (x \lt 0) \\ x=7 \quad & f(7) = -7^2 &=& -49 & | \quad (x\ge 0) \\ x=-49 \quad & f(-49) = -49+8 &=& -41 & | \quad (x \lt 0) \\ x=-41 \quad & f(-41) = -41+8 &=& -33 & | \quad (x \lt 0) \\ \hline \end{array} \)

 

\(f(f(f(f(f(1))))) = -33\)

 

laugh

heureka  Aug 29, 2017
 #2
avatar+26716 
+2

Interestingly, a staircase diagram shows this function is cyclic once it reaches x = -1:

 

.

Alan  Aug 29, 2017

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.