Let f(x) = x^3+bx+c where b and c are integers.
If f(5+\sqrt 3)=0 determine b+c
.
If 5 + √3 is a root then so is 5 - √3
There is no x^2 term......and the sum of the roots = 0/a = 0
So
(5 + √3) + (5 - √3) + R = 0 where R is the remaining root
10 + R = 0 ⇒ R = -10
And ....let R1, R2 and R3 represent the roots...and we have that
R1*R2 + R1*R3 + R2*R3 = b / a = b .....so.....
-10(5 + √3) + -10( 5 - √3) + (5 + √3) ( 5 - √3) = b
-50 + -50 + 22 = b ⇒ -78
And the product of the roots = -c ....so....
-10(22) = -c
220 = c
So ...b + c = -78 + 220 = 142