We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Let f(x) = x^3+bx+c where b and c are integers. If f(5+\sqrt 3)=0 determine b+c

0
1141
1

Let f(x) = x^3+bx+c  where b and c are integers.

If f(5+\sqrt 3)=0 determine b+c

.

Jan 4, 2018

### 1+0 Answers

#1
+1

If   5 + √3   is a root then so is  5 - √3

There is no x^2 term......and the sum of the roots  = 0/a  =  0

So

(5 + √3)  + (5 - √3)  + R  = 0   where R is the remaining root

10  + R  =  0    ⇒  R   = -10

And  ....let  R1, R2  and R3   represent the roots...and we have that

R1*R2   +  R1*R3  + R2*R3   =   b  / a   =  b   .....so.....

-10(5 + √3) + -10(  5 - √3)  +   (5 + √3) ( 5 - √3)  =  b

-50 + -50  + 22   =  b   ⇒   -78

And the product of the roots  =  -c   ....so....

-10(22)  =  -c

220  =  c

So   ...b +  c  =  -78   +  220   =  142   Jan 4, 2018