$${f}{\left({\mathtt{x}}\right)} = {{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{7}}$$
Plug in -3 for x:
$${f}{\left(-{\mathtt{3}}\right)} = {\left(-{\mathtt{3}}\right)}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\times\,}}\left(-{\mathtt{3}}\right){\mathtt{\,-\,}}{\mathtt{7}}$$
Now simplify:
$${f}{\left(-{\mathtt{3}}\right)} = {\mathtt{9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}{\mathtt{\,-\,}}{\mathtt{7}}$$
$${f}{\left(-{\mathtt{3}}\right)} = {\mathtt{11}}$$
.$${f}{\left({\mathtt{x}}\right)} = {{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{7}}$$
Plug in -3 for x:
$${f}{\left(-{\mathtt{3}}\right)} = {\left(-{\mathtt{3}}\right)}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\times\,}}\left(-{\mathtt{3}}\right){\mathtt{\,-\,}}{\mathtt{7}}$$
Now simplify:
$${f}{\left(-{\mathtt{3}}\right)} = {\mathtt{9}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}{\mathtt{\,-\,}}{\mathtt{7}}$$
$${f}{\left(-{\mathtt{3}}\right)} = {\mathtt{11}}$$