+0  
 
0
607
1
avatar

Let $m$ and $n$ be the roots of the quadratic equation $4x^2 + 5x + 3 = 0$. Find $(m + 7)(n + 7)$.

Guest Feb 22, 2017

Best Answer 

 #1
avatar+19659 
+15

Let m and n be the roots of the quadratic equation 4x^2 + 5x + 3 = 0.

Find (m + 7)(n + 7).

 

\(\begin{array}{|rcll|} \hline ax^2+bx+c &=& 0 \\ x &=& \frac{ -b \pm \sqrt{b^2-4ac} } {2a} \\\\ x_1 + x_2 &=& \frac{ -b + \sqrt{b^2-4ac} } {2a} + \frac{ -b - \sqrt{b^2-4ac} } {2a} \\ &=& \frac{ -b } {2a}+\frac{\sqrt{b^2-4ac} } {2a} + \frac{ -b } {2a} - \frac{ \sqrt{b^2-4ac} } {2a} \\ &=& \frac{ -2b } {2a} \\ \mathbf{x_1 + x_2} & \mathbf{=} & \mathbf{-\frac{ b } { a}} \qquad \text{ or } \qquad \mathbf{m + n} \mathbf{=} \mathbf{-\frac{ b } { a}} \\\\ x_1\cdot x_2 &=& \left( \frac{ -b + \sqrt{b^2-4ac} } {2a} \right) \cdot \left( \frac{ -b - \sqrt{b^2-4ac} } {2a} \right) \\ &=& \left( \frac{ -b } {2a} + \frac{ \sqrt{b^2-4ac} } {2a} \right) \cdot \left( \frac{ -b } {2a} - \frac{ \sqrt{b^2-4ac} } {2a} \right) \\ &=& \left( \frac{ -b } {2a} \right)^2 - \left( \frac{ \sqrt{b^2-4ac} } {2a} \right)^2 \\ &=& \frac{ b^2 } {4a^2} - \frac{ b^2-4ac } {4a^2} \\ &=& \frac{ b^2-(b^2-4ac) } {4a^2} \\ &=& \frac{ b^2-b^2+4ac } {4a^2} \\ &=& \frac{ 4ac } {4a^2} \\ \mathbf{x_1\cdot x_2} & \mathbf{=} & \mathbf{\frac{ c } { a}} \qquad \text{ or } \qquad \mathbf{m\cdot n} \mathbf{=} \mathbf{\frac{ c } { a}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && (m + 7)(n + 7) \\ &=& m\cdot n + 7\cdot (m+n) + 7^2 \\ &=& m\cdot n + 7\cdot (m+n) + 49 \\\\ 4x^2 + 5x + 3 &=& 0 \qquad a = 4,\ b=5,\ c=3 \\ m + n &=& -\frac{ b } { a} \\ &=& -\frac{ 5 } { 4 } \\\\ m\cdot n &=& \frac{ c } { a} \\ &=& \frac{ 3 } { 4 } \\\\ (m + 7)(n + 7) &=& m\cdot n + 7\cdot (m+n) + 49 \\ &=& \frac{ 3 } { 4 } + 7\cdot (-\frac{ 5 } { 4 }) + 49 \\ &=& - \frac{ 32 } { 4 } + 49 \\ &=& -8 + 49 \\ &=& 41 \\ \hline \end{array}\)

 

(m + 7)(n + 7) = 41

 

laugh

heureka  Feb 23, 2017
edited by heureka  Feb 23, 2017
edited by heureka  Feb 23, 2017
 #1
avatar+19659 
+15
Best Answer

Let m and n be the roots of the quadratic equation 4x^2 + 5x + 3 = 0.

Find (m + 7)(n + 7).

 

\(\begin{array}{|rcll|} \hline ax^2+bx+c &=& 0 \\ x &=& \frac{ -b \pm \sqrt{b^2-4ac} } {2a} \\\\ x_1 + x_2 &=& \frac{ -b + \sqrt{b^2-4ac} } {2a} + \frac{ -b - \sqrt{b^2-4ac} } {2a} \\ &=& \frac{ -b } {2a}+\frac{\sqrt{b^2-4ac} } {2a} + \frac{ -b } {2a} - \frac{ \sqrt{b^2-4ac} } {2a} \\ &=& \frac{ -2b } {2a} \\ \mathbf{x_1 + x_2} & \mathbf{=} & \mathbf{-\frac{ b } { a}} \qquad \text{ or } \qquad \mathbf{m + n} \mathbf{=} \mathbf{-\frac{ b } { a}} \\\\ x_1\cdot x_2 &=& \left( \frac{ -b + \sqrt{b^2-4ac} } {2a} \right) \cdot \left( \frac{ -b - \sqrt{b^2-4ac} } {2a} \right) \\ &=& \left( \frac{ -b } {2a} + \frac{ \sqrt{b^2-4ac} } {2a} \right) \cdot \left( \frac{ -b } {2a} - \frac{ \sqrt{b^2-4ac} } {2a} \right) \\ &=& \left( \frac{ -b } {2a} \right)^2 - \left( \frac{ \sqrt{b^2-4ac} } {2a} \right)^2 \\ &=& \frac{ b^2 } {4a^2} - \frac{ b^2-4ac } {4a^2} \\ &=& \frac{ b^2-(b^2-4ac) } {4a^2} \\ &=& \frac{ b^2-b^2+4ac } {4a^2} \\ &=& \frac{ 4ac } {4a^2} \\ \mathbf{x_1\cdot x_2} & \mathbf{=} & \mathbf{\frac{ c } { a}} \qquad \text{ or } \qquad \mathbf{m\cdot n} \mathbf{=} \mathbf{\frac{ c } { a}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && (m + 7)(n + 7) \\ &=& m\cdot n + 7\cdot (m+n) + 7^2 \\ &=& m\cdot n + 7\cdot (m+n) + 49 \\\\ 4x^2 + 5x + 3 &=& 0 \qquad a = 4,\ b=5,\ c=3 \\ m + n &=& -\frac{ b } { a} \\ &=& -\frac{ 5 } { 4 } \\\\ m\cdot n &=& \frac{ c } { a} \\ &=& \frac{ 3 } { 4 } \\\\ (m + 7)(n + 7) &=& m\cdot n + 7\cdot (m+n) + 49 \\ &=& \frac{ 3 } { 4 } + 7\cdot (-\frac{ 5 } { 4 }) + 49 \\ &=& - \frac{ 32 } { 4 } + 49 \\ &=& -8 + 49 \\ &=& 41 \\ \hline \end{array}\)

 

(m + 7)(n + 7) = 41

 

laugh

heureka  Feb 23, 2017
edited by heureka  Feb 23, 2017
edited by heureka  Feb 23, 2017

17 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.