+0  
 
+1
47
1
avatar

Let n be a natural number with exactly 2 positive prime divisors. Of n^2 has 27 divisors, how many does n have?

Guest Jun 24, 2018
 #1
avatar+19624 
0

Let n be a natural number with exactly 2 positive prime divisors.

If n^2 has 27 divisors, how many does n have?

 

\(\text{ Let $ n = p^n\times q^m $ and $p$ and $q$ are prime }\)

The number of devisors of \(n\) is \((n+1)(m+1)\)

 

\(\text{ Let $ n^2 = p^{2n} \times q^{2m} $ } \)

The number of devisors of \(n^2\) is \((2n+1)(2m+1)\)

 

\(\begin{array}{|rcll|} \hline (2n+1)(2m+1) &=& 27 \quad & | \quad 27=3^3 \\\\ \underbrace{(2n+1)}_{=3}\underbrace{(2m+1)}_{=3^2} &=& 3^3\\\\ 2n+1 &=& 3 \\ 2n &=& 2 \\ \mathbf{n} &\mathbf{=} & \mathbf{ 1 } \\\\ 2m+1 &=& 3^2 \\ 2m+1 &=& 9 \\ 2m &=& 8 \\ \mathbf{m} &\mathbf{=} & \mathbf{4} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && (n+1)(m+1) \quad & | \quad n=1 \text{ and } m = 4 \\ &=& (1+1)(4+1) \\ &=& 2\cdot 5 \\ &\mathbf{=} & \mathbf{10} \\ \hline \end{array}\)

 

n has 10 divisors.

 

Example:

\(\text{Let $n = 162 = 2\times 3^4$ } \\ \text{Divisors $162: 1,2,3,6,9,18,27,54,81,162\ $ ($10$ divisors)}\)

 

\(\text{Let $n^2 = 162^2 = 26244 = 2^2\times 3^8 $} \\ \text{Divisors 162^2:$\\1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486,\\ 729, 972, 1458, 2187, 2916, 4374, 6561, 8748, 13122, 26244\ $ ($27$ divisors)}\)

 

 

laugh

heureka  Jun 25, 2018

12 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.