+0  
 
0
861
2
avatar

Let f(x) = 2x + 7 and g(x) = 3x + c. Find c if (f \circ g)(x) = (g \circ f)(x) for all x.

 Nov 11, 2014

Best Answer 

 #1
avatar+130511 
+5

Let f(x) = 2x + 7 and g(x) = 3x + c. Find c if (f \circ g)(x) = (g \circ f)(x) for all x.

(f o g)(x)   says to take the function "g" and put it into "f"...so we have

2[3x + c ] + 7 =

6x + 2c + 7

(g o f)(x)   says....wait for it......to take "f" and put it into "g"....so we have

3[2x + 7] + c  =    6x + 21 + c

And we want to set these equal and solve for c

6x + 2c + 7 = 6x + 21 + c         subtract 6x from both sides

2c + 7  = 21 + c                        subtract c, 7 from both sides

c = 14

 

 Nov 11, 2014
 #1
avatar+130511 
+5
Best Answer

Let f(x) = 2x + 7 and g(x) = 3x + c. Find c if (f \circ g)(x) = (g \circ f)(x) for all x.

(f o g)(x)   says to take the function "g" and put it into "f"...so we have

2[3x + c ] + 7 =

6x + 2c + 7

(g o f)(x)   says....wait for it......to take "f" and put it into "g"....so we have

3[2x + 7] + c  =    6x + 21 + c

And we want to set these equal and solve for c

6x + 2c + 7 = 6x + 21 + c         subtract 6x from both sides

2c + 7  = 21 + c                        subtract c, 7 from both sides

c = 14

 

CPhill Nov 11, 2014
 #2
avatar
0

Thank you!

 Nov 11, 2014

0 Online Users