+0  
 
0
60
1
avatar+124 

Let p, q, and r be constants. One solution to the equation (x-p)(x-q) = (r-p)(r-q) is x=r. Find the other solution in terms of p, q, and r.

Creeperhissboom  Mar 26, 2018
Sort: 

1+0 Answers

 #1
avatar+85759 
+2

Expand and we have that

 

x^2 - (p + q)x + pq  = r^2 - (p+ q)r  + pq

 

x^2  - (p + q)k - r^2 + (p + q)r   = 0

 

The sum of the roots  =  (p + q) / 1   = p + q

The product of the roots  is [ -r^2  + (p + q)r] / 1  =  -r^2  + (p + q)r

 

Since  r  is one solution

 

Let  s   be the other   and we have

 

So

 

r + s  = p + q

s  = p + q  - r

 

Verify  that

 

r * s  =    r ( p + q - r)   =  -r^2  + (p + q)r

 

 

cool cool cool

CPhill  Mar 26, 2018

38 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details