Let P(x) be a polynomial whose degree is 6. If P(n) =1/n for n = 1, 2, 3, 4, 5, 6, 7, compute the value P(8).
This is DEFINITELY tedious to solve!!!
The form is
P(x) = ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + fx + g
Using a computer algebra system, we have that
a =1/ 5040
b = -1/ 180
c = 23/ 360
d = -7/18
e = 967/720
f = -469/180
g = 363/140
P(x) = x^6/5040 - x^5/180 +23x^4/360 -7x^3/18+967x^2/720-469/180x +363/140
P(8) = 1/4
solve( a*1^6 + b*1^5 + c*1^4 + d*1^3 + e1*1^2 + f*1 + g=1/1, a*2^6 + b*2^5 + c*2^4 + d*2^3 + e1*2^2 + f*2 + g=1/2, a*3^6 + b*3^5 + c*3^4 + d*3^3 + e1*3^2 + f*3 + g=1/3, a*4^6 + b*4^5 + c*4^4 + d*4^3 + e1*4^2 + f*4 + g=1/4, a*5^6 + b*5^5 + c*5^4 + d*5^3 + e1*5^2 + f*5 + g=1/5, a*6^6 + b*6^5 + c*6^4 + d*6^3 + e1*6^2 + f*6 + g=1/6, a*7^6 + b*7^5 + c*7^4 + d*7^3 + e1*7^2 + f*7 + g=1/7 )
(1/5040)*8^6 + -((1/180))*8^5 + (23/360)*8^4 + -((7/18))*8^3 + (967/720)*8^2 + -((469/180))*8 + (363/140)