Let P(x, y) denote the point where the terminal side of an angle θ meets the unit circle. If P is in Quadrant II and x = -3⁄7 , evaluate the six trigonometric functions of θ.
There is your picture. :)
$$\\sin\theta=\frac{\sqrt{40}}{7}\\\\
cosec\theta=\frac{7}{\sqrt{40}}\\\\
cos\theta=\frac{-3}{7}\\\\
sec\theta=\frac{7}{-3}\\\\
tan\theta=\frac{\sqrt{40}}{7}\div \frac{-3}{7}=\frac{\sqrt{40}}{7}\times \frac{7}{-3}=-\frac{\sqrt{40}}{7}\\\\
cot\theta=-\frac{7}{\sqrt{40}}$$
You could clean some of those up a little :)
There is your picture. :)
$$\\sin\theta=\frac{\sqrt{40}}{7}\\\\
cosec\theta=\frac{7}{\sqrt{40}}\\\\
cos\theta=\frac{-3}{7}\\\\
sec\theta=\frac{7}{-3}\\\\
tan\theta=\frac{\sqrt{40}}{7}\div \frac{-3}{7}=\frac{\sqrt{40}}{7}\times \frac{7}{-3}=-\frac{\sqrt{40}}{7}\\\\
cot\theta=-\frac{7}{\sqrt{40}}$$
You could clean some of those up a little :)