+0  
 
0
6750
1
avatar

Let P(x, y) denote the point where the terminal side of an angle θ meets the unit circle. If P is in Quadrant II and x = -3⁄7 , evaluate the six trigonometric functions of θ.

 Nov 5, 2014

Best Answer 

 #1
avatar+118724 
+5

 

There is your picture. :)

$$\\sin\theta=\frac{\sqrt{40}}{7}\\\\
cosec\theta=\frac{7}{\sqrt{40}}\\\\
cos\theta=\frac{-3}{7}\\\\
sec\theta=\frac{7}{-3}\\\\
tan\theta=\frac{\sqrt{40}}{7}\div \frac{-3}{7}=\frac{\sqrt{40}}{7}\times \frac{7}{-3}=-\frac{\sqrt{40}}{7}\\\\
cot\theta=-\frac{7}{\sqrt{40}}$$

 

You could clean some of those up a little :)

 Nov 5, 2014
 #1
avatar+118724 
+5
Best Answer

 

There is your picture. :)

$$\\sin\theta=\frac{\sqrt{40}}{7}\\\\
cosec\theta=\frac{7}{\sqrt{40}}\\\\
cos\theta=\frac{-3}{7}\\\\
sec\theta=\frac{7}{-3}\\\\
tan\theta=\frac{\sqrt{40}}{7}\div \frac{-3}{7}=\frac{\sqrt{40}}{7}\times \frac{7}{-3}=-\frac{\sqrt{40}}{7}\\\\
cot\theta=-\frac{7}{\sqrt{40}}$$

 

You could clean some of those up a little :)

Melody Nov 5, 2014

1 Online Users