Let Q(x) = x^2+bx+c where b and c are integers.
If Q\left((1+\sqrt 2)^8\right)=0 determine b+c .
(1 + √2)^8 evaluates to 577 + 408√2
So.....this is a root....and so is the conjugate, 577 - 408√2
And the sum of the roots = -b
So
577 + 577 = - b ⇒ 1154 ⇒ b = -1154
And the product of the roots = c
So
( 577 + 408√2) ( 577 - 408√2) = c = ( 332929 - 332928) = 1
So
b + c = -1154 + 1 = -1153