We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1095
1
avatar+644 

Let Q(x) = x^2+bx+c where b and c are integers.

If Q\left((1+\sqrt 2)^8\right)=0 determine b+c .

 Jan 4, 2018
 #1
avatar+102379 
+1

(1  +   √2)^8  evaluates to  577 + 408√2

 

So.....this is a root....and so is the conjugate, 577 - 408√2

 

And the sum of the roots  = -b

 

So

 

577  +  577  =  - b  ⇒  1154  ⇒  b  =  -1154

 

And the product of the roots  = c

 

So

 

(  577 + 408√2)  (  577 - 408√2)   =  c   =   ( 332929  - 332928)  =   1

 

So

 

b  +  c  =   -1154  +   1   =   -1153

 

 

cool cool cool

 Jan 4, 2018

18 Online Users

avatar