Let \(S_0=0\) and let \(S_k\) equal \(a_1+2a_2+\dots +ka_k\) for \(k\geq 1\) . Define \(a_i\) to be 1 if S_{i-1} < i and -1 if \(S_{i-1}\geq i\). What is the largest \(k\leq 2010\) such that \(S_k=0\)?
\bump sol please