Let t be a real number such that
⌊t⌋=4,⌊t+{t}⌋=4,⌊t+2{t}⌋=5,
where {t}=t−⌊t⌋ Find all possible values for t
let t=4+f, f∈[0,1) 4≤(4+f)+f<50≤2f<10≤f<12 5≤4+f+2f<61≤3f<213≤f<23 both of these inequalities must be met13≤f<12133≤t<92