We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
75
1
avatar+187 

Let t be a real number such that

\(\begin{aligned} \lfloor t \rfloor &= 4, \\ \lfloor t + \{t\} \rfloor &= 4, \\ \lfloor t + 2 \{ t \} \rfloor & = 5, \end{aligned}\)

where \(\{t\} = t - \lfloor t \rfloor\) Find all possible values for t 

 Aug 9, 2019
 #1
avatar+5788 
+2

\(\text{let $t=4+f,~f\in [0,1)$}\\~\\ 4 \leq (4+f)+f < 5\\ 0 \leq 2f < 1\\ 0\leq f < \dfrac 1 2\\~\\ 5 \leq 4+f + 2f < 6\\ 1 \leq 3f < 2\\ \dfrac 1 3 \leq f < \dfrac 2 3\\~\\ \text{both of these inequalities must be met}\\ \dfrac 1 3 \leq f < \dfrac 1 2\\ \dfrac{13}{3} \leq t < \dfrac 9 2\)

.
 Aug 9, 2019

26 Online Users

avatar
avatar
avatar
avatar
avatar