+0  
 
0
508
1
avatar

Let triangle DEF be equilateral, where the side length is 3. A point G is chosen at random inside the triangle. Find the probability that the length DG is at most 1.

 Mar 9, 2020
 #1
avatar+2228 
0

 

Let triangle DEF be equilateral, where the side length is 3.     

A point G is chosen at random inside the triangle.     

Find the probability that the length DG is at most 1.      

 

Draw an equilateral triangle DEF, side 3.   

Draw a circle, center at D, 1 inch radius.     

 

Probability  =  area of circle sector inside triangle / area of triangle not in circle sector     

 

Area of entire circle  =  (3.1416) • 12  =  3.1416     

Area of sector inside triangle  =  (60 / 360) • 3.1416  =  0.5236     

 

Area of entire triangle  =  [ sqrt(3) / 4 ] • 32  =  3.8971     

Area of triangle outside sector  =  3.8971 – 0.5236  =  3.3735      

 

Probability  =  0.5236 / 3.3735  =  0.1552  as a percent  =  15.52%     

.     

 Oct 7, 2025

0 Online Users