+0  
 
+2
253
2
avatar+1442 

Let x, y, and z be nonzero real numbers. Find all possible values of x/ | x | + y/ | y | + z/ | z | + xyz/ | xyz |.  List your values in increasing order, separated by commas.

 

Thanks so much!

 

Edit: I solved this one too, it's -4,0,4

AnonymousConfusedGuy  Dec 11, 2017
edited by AnonymousConfusedGuy  Dec 11, 2017

Best Answer 

 #1
avatar+7154 
+1

I know you solved this already, but I wanted to try it too.

 

If  x ,  y , and  z  are positive...

 

\(\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{x}{x}+\frac{y}{y}+\frac{z}{z}+\frac{xyz}{xyz}\,=\,1+1+1+1\,=\,4\)

 

If only  x  is negative...

 

\(\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{-|x|}{|x|}+\frac{y}{y}+\frac{z}{z}+\frac{-|x|yz}{|xyz|}\,=\,-1+1+1-1\,=\,0\)

 

If only  y  or only  z  is negative, the result will also be  0 .

 

If  x  and  y  are negative, and  z  is positive...

 

\(\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{-|x|}{|x|}+\frac{-|y|}{|y|}+\frac{z}{z}+\frac{(-|x|)(-|y|)z}{|xyz|}\,=\,-1-1+1+1\,=\,0\)

 

If any two are negative, the result will also be  0  .

 

If  x ,  y , and  z  are negative...

 

\(\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{-|x|}{|x|}+\frac{-|y|}{|y|}+\frac{-|z|}{|z|}+\frac{(-|x|)(-|y|)(-|z|)}{|xyz|}\,=\,-1-1-1-1\,=\,-4\)

 

smileysmiley

hectictar  Dec 11, 2017
 #1
avatar+7154 
+1
Best Answer

I know you solved this already, but I wanted to try it too.

 

If  x ,  y , and  z  are positive...

 

\(\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{x}{x}+\frac{y}{y}+\frac{z}{z}+\frac{xyz}{xyz}\,=\,1+1+1+1\,=\,4\)

 

If only  x  is negative...

 

\(\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{-|x|}{|x|}+\frac{y}{y}+\frac{z}{z}+\frac{-|x|yz}{|xyz|}\,=\,-1+1+1-1\,=\,0\)

 

If only  y  or only  z  is negative, the result will also be  0 .

 

If  x  and  y  are negative, and  z  is positive...

 

\(\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{-|x|}{|x|}+\frac{-|y|}{|y|}+\frac{z}{z}+\frac{(-|x|)(-|y|)z}{|xyz|}\,=\,-1-1+1+1\,=\,0\)

 

If any two are negative, the result will also be  0  .

 

If  x ,  y , and  z  are negative...

 

\(\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{-|x|}{|x|}+\frac{-|y|}{|y|}+\frac{-|z|}{|z|}+\frac{(-|x|)(-|y|)(-|z|)}{|xyz|}\,=\,-1-1-1-1\,=\,-4\)

 

smileysmiley

hectictar  Dec 11, 2017
 #2
avatar+87294 
+1

Nice, hectictar!!!!!....I like this one    ....

 

 

 

cool cool cool

CPhill  Dec 11, 2017

14 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.