+0

# Let x, y, and z be nonzero real numbers. Find all possible values of x/ | x | + y/ | y | + z/ | z | + xyz/ | xyz |. List your values in

+1
110
2
+769

Let x, y, and z be nonzero real numbers. Find all possible values of x/ | x | + y/ | y | + z/ | z | + xyz/ | xyz |.  List your values in increasing order, separated by commas.

Thanks so much!

Edit: I solved this one too, it's -4,0,4

AnonymousConfusedGuy  Dec 11, 2017
edited by AnonymousConfusedGuy  Dec 11, 2017

#1
+6510
+1

I know you solved this already, but I wanted to try it too.

If  x ,  y , and  z  are positive...

$$\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{x}{x}+\frac{y}{y}+\frac{z}{z}+\frac{xyz}{xyz}\,=\,1+1+1+1\,=\,4$$

If only  x  is negative...

$$\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{-|x|}{|x|}+\frac{y}{y}+\frac{z}{z}+\frac{-|x|yz}{|xyz|}\,=\,-1+1+1-1\,=\,0$$

If only  y  or only  z  is negative, the result will also be  0 .

If  x  and  y  are negative, and  z  is positive...

$$\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{-|x|}{|x|}+\frac{-|y|}{|y|}+\frac{z}{z}+\frac{(-|x|)(-|y|)z}{|xyz|}\,=\,-1-1+1+1\,=\,0$$

If any two are negative, the result will also be  0  .

If  x ,  y , and  z  are negative...

$$\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{-|x|}{|x|}+\frac{-|y|}{|y|}+\frac{-|z|}{|z|}+\frac{(-|x|)(-|y|)(-|z|)}{|xyz|}\,=\,-1-1-1-1\,=\,-4$$

hectictar  Dec 11, 2017
Sort:

#1
+6510
+1

I know you solved this already, but I wanted to try it too.

If  x ,  y , and  z  are positive...

$$\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{x}{x}+\frac{y}{y}+\frac{z}{z}+\frac{xyz}{xyz}\,=\,1+1+1+1\,=\,4$$

If only  x  is negative...

$$\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{-|x|}{|x|}+\frac{y}{y}+\frac{z}{z}+\frac{-|x|yz}{|xyz|}\,=\,-1+1+1-1\,=\,0$$

If only  y  or only  z  is negative, the result will also be  0 .

If  x  and  y  are negative, and  z  is positive...

$$\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{-|x|}{|x|}+\frac{-|y|}{|y|}+\frac{z}{z}+\frac{(-|x|)(-|y|)z}{|xyz|}\,=\,-1-1+1+1\,=\,0$$

If any two are negative, the result will also be  0  .

If  x ,  y , and  z  are negative...

$$\frac{x}{|x|}+\frac{y}{|y|}+\frac{z}{|z|}+\frac{xyz}{|xyz|}\,=\,\frac{-|x|}{|x|}+\frac{-|y|}{|y|}+\frac{-|z|}{|z|}+\frac{(-|x|)(-|y|)(-|z|)}{|xyz|}\,=\,-1-1-1-1\,=\,-4$$

hectictar  Dec 11, 2017
#2
+83935
+1

Nice, hectictar!!!!!....I like this one    ....

CPhill  Dec 11, 2017

### 5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details