limx→∞√4x2−x−√9x2+1+x
limx→∞x(√4−1x−√3+1x+1)
In the limit we can ignore the 1x terms
limx→∞x(√4−√3+1)=limx→∞x(3−√3)
3>√3 so limx→∞x(3−√3)=+∞and so limx→∞√4x2−x−√9x2+1+x=+∞
.lim(sqrt(4x^2-x)-sqrt(9x^2+1)+x),x->infinity
lim_(x->infinity) (sqrt(4 x^2-x)-sqrt(9 x^2+1)+x) = -1/4
Find the following limit:
lim_(x->infinity) (x+sqrt(4 x^2-x)-sqrt(9 x^2+1))
x+sqrt(4 x^2-x)-sqrt(9 x^2+1) = x+sqrt(x (4 x-1))-sqrt(9 x^2+1):
lim_(x->infinity) x+sqrt(x (4 x-1))-sqrt(9 x^2+1)
The limit of x+sqrt(x (4 x-1))-sqrt(9 x^2+1) as x approaches infinity is -1/4:
-1/4
-1/4 = -1/4:
Answer: |
| -1/4