Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js
 
+0  
 
0
3376
3
avatar

lim(sqrt(4x^2-x)-sqrt(9x^2+1)+x),x->infinity 

 Oct 4, 2015
 #1
avatar+6251 
0

limx4x2x9x2+1+x

 

limxx(41x3+1x+1)

 

In the limit we can ignore the 1x terms

 

limxx(43+1)=limxx(33)

 

3>3 so limxx(33)=+and so limx4x2x9x2+1+x=+

.
 Oct 4, 2015
 #2
avatar
0

lim(sqrt(4x^2-x)-sqrt(9x^2+1)+x),x->infinity 

 

lim_(x->infinity) (sqrt(4 x^2-x)-sqrt(9 x^2+1)+x) = -1/4

 

Find the following limit:
lim_(x->infinity) (x+sqrt(4 x^2-x)-sqrt(9 x^2+1))

x+sqrt(4 x^2-x)-sqrt(9 x^2+1)  =  x+sqrt(x (4 x-1))-sqrt(9 x^2+1):
lim_(x->infinity) x+sqrt(x (4 x-1))-sqrt(9 x^2+1)

The limit of x+sqrt(x (4 x-1))-sqrt(9 x^2+1) as x approaches infinity is -1/4:
-1/4

-1/4 = -1/4:
Answer: | 
| -1/4

 Oct 4, 2015
 #3
avatar+130466 
+5

Have a look at the graph, here........https://www.desmos.com/calculator/wslbve0v6i

 

It does appear that this approaches -1/4 as x→ infinity

 

 

 

cool cool cool

 Oct 4, 2015

1 Online Users