Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2
2471
4
avatar

lim t→0 tan 12t/sin 4t

 Dec 7, 2014

Best Answer 

 #2
avatar+130477 
+10

Here's another way to do this

tan 12t / sin4t    =

(sin12t/cos12t) / sin4t = (divide numerator and denominator by t)

(sin12t/t) /[(sin4t/t)(cos12t)] = (multiply the numerator by 12/12  and the denominator by 4/4)

(12sin12t/12t) / [ (4sin4t/4t)(cos12t)]

Now

lim t → 0   (12sin12t/12t)   = 12   and

lim t → 0   (4sin4t/4t)  = 4    and

lim t → 0  (cos12t)  = 1     so

 

12/(4 * 1 )  = 12/4   = 3

 

 Dec 7, 2014
 #1
avatar+118703 
+10

limt0tan12tsin4t=limt0sin12tcos12tsin4t=limt0sin4tcos8t+cos4tsin8tcos12tsin4t=limt0sin4tcos8t+cos4t2sin4tcos4tcos12tsin4t=limt0cos8t+cos4t2cos4tcos12t=cos0+cos02cos0cos0=1+1211=3

.
 Dec 7, 2014
 #2
avatar+130477 
+10
Best Answer

Here's another way to do this

tan 12t / sin4t    =

(sin12t/cos12t) / sin4t = (divide numerator and denominator by t)

(sin12t/t) /[(sin4t/t)(cos12t)] = (multiply the numerator by 12/12  and the denominator by 4/4)

(12sin12t/12t) / [ (4sin4t/4t)(cos12t)]

Now

lim t → 0   (12sin12t/12t)   = 12   and

lim t → 0   (4sin4t/4t)  = 4    and

lim t → 0  (cos12t)  = 1     so

 

12/(4 * 1 )  = 12/4   = 3

 

CPhill Dec 7, 2014
 #3
avatar+118703 
+5

Yes that works Chris - it is quite neat too.   I like it    

It is easier than my solution - I always do things the hard way - It is my trade mark so I can't stop now.

Can I ?  Would anyone like me to do it in LaTex so that it is easier to follow?

 Dec 8, 2014
 #4
avatar+130477 
0

Thanks, Melody......

 

 Dec 8, 2014

2 Online Users

avatar