+0  
 
0
759
4
avatar

lim t→0 tan 12t/sin 4t

Guest Dec 7, 2014

Best Answer 

 #2
avatar+87293 
+10

Here's another way to do this

tan 12t / sin4t    =

(sin12t/cos12t) / sin4t = (divide numerator and denominator by t)

(sin12t/t) /[(sin4t/t)(cos12t)] = (multiply the numerator by 12/12  and the denominator by 4/4)

(12sin12t/12t) / [ (4sin4t/4t)(cos12t)]

Now

lim t → 0   (12sin12t/12t)   = 12   and

lim t → 0   (4sin4t/4t)  = 4    and

lim t → 0  (cos12t)  = 1     so

 

12/(4 * 1 )  = 12/4   = 3

 

CPhill  Dec 7, 2014
 #1
avatar+92751 
+10

$$\\\displaystyle\lim_{t\rightarrow 0}\: \;\frac{tan12t}{sin4t}\\\\\\
=\displaystyle\lim_{t\rightarrow 0}\: \;\frac{sin12t}{cos12t\;sin4t}\\\\\\
=\displaystyle\lim_{t\rightarrow 0}\: \;\frac{sin4tcos8t+cos4tsin8t}{cos12t\;sin4t}\\\\\\
=\displaystyle\lim_{t\rightarrow 0}\: \;\frac{sin4tcos8t+cos4t*2sin4tcos4t}{cos12t\;sin4t}\\\\\\
=\displaystyle\lim_{t\rightarrow 0}\: \;\frac{cos8t+cos4t*2cos4t}{cos12t}\\\\\\
=\frac{cos0+cos0*2cos0}{cos0}\\\\\\
=\frac{1+1*2*1}{1}\\\\
=3$$

Melody  Dec 7, 2014
 #2
avatar+87293 
+10
Best Answer

Here's another way to do this

tan 12t / sin4t    =

(sin12t/cos12t) / sin4t = (divide numerator and denominator by t)

(sin12t/t) /[(sin4t/t)(cos12t)] = (multiply the numerator by 12/12  and the denominator by 4/4)

(12sin12t/12t) / [ (4sin4t/4t)(cos12t)]

Now

lim t → 0   (12sin12t/12t)   = 12   and

lim t → 0   (4sin4t/4t)  = 4    and

lim t → 0  (cos12t)  = 1     so

 

12/(4 * 1 )  = 12/4   = 3

 

CPhill  Dec 7, 2014
 #3
avatar+92751 
+5

Yes that works Chris - it is quite neat too.   I like it    

It is easier than my solution - I always do things the hard way - It is my trade mark so I can't stop now.

Can I ?  Would anyone like me to do it in LaTex so that it is easier to follow?

Melody  Dec 8, 2014
 #4
avatar+87293 
0

Thanks, Melody......

 

CPhill  Dec 8, 2014

5 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.