We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
660
9
avatar+1832 

How can I do these

 

 Oct 24, 2014

Best Answer 

 #8
avatar+17771 
+5

My argument for #22:

As x→0+, ln(x) → -∞.

When does tan(x) → -∞?

As x → -π/2 (from the plus side), tan(x) → -∞.

So, as tan(x) → -∞ (from the plus side), x → -π/2 

So, as x → -∞, invTan(x) →  -π/2 

So, the limit is  -π/2 

 Oct 24, 2014
 #1
avatar+100800 
+5

Hi 315,

Alan can you check this please. 

I am not very good at limits but I will give it a shot.  

$$\\0 so\\
\infty>sec^{-1}x \qquad \;\;and\;\; sec^{-1}x>\frac{1}{\pi}\\\\
\frac{1}{\pi}

 

$$\lim\limits_{x\rightarrow \infty}\;\;sec^{-1}\;\;\frac{x^2+1}{x+1}\\\\
=\lim\limits_{x\rightarrow \infty}\;\;sec^{-1}\;\;\frac{x+\frac{1}{x}}{1+\frac{1}{x}}\\\\
=sec^{-1}\;\;\frac{\infty}{1}\\\\
=\frac{\pi}{2}$$

I know pi/2 is right but I am really confused dismissing other answers.

 

 

 

This answer is DEFINITELY NOT completely correct.

 Oct 24, 2014
 #2
avatar+17771 
0

My argument for #18:  

1) Since lim(x→∞) (x² + 1)/(x + 1)  = ∞,

2) the problem has the same limit as  lim(x→∞) invSec(x)

3) which has the same limit as  lim(x→∞) invCos(1/x)

4) and since  lim(x→∞) (1/x)  = 0,

5) it becomes  lim(x→0)  Cos(x)  =  1.

Any questions on any of the step?

I haven't looked at the other two yet.

 Oct 24, 2014
 #3
avatar+100800 
+5

20)  I drew a triangle to help me with this.

 

$$\\\lim\limits_{x\rightarrow\infty}\;\;Sin(tan^{-1}x)\\\\
\lim\limits_{x\rightarrow\infty}\;\;\frac{x}{\sqrt{1+x^2}}\\\\
\lim\limits_{x\rightarrow\infty}\;\;\frac{x}{\sqrt{x^2(\frac{1}{x^2}+1})}\\\\
\lim\limits_{x\rightarrow\infty}\;\;\frac{x}{x\sqrt{\frac{1}{x^2}+1}}\\\\
\lim\limits_{x\rightarrow\infty}\;\;\frac{1}{\sqrt{\frac{1}{x^2}+1}}\\\\
=\frac{1}{\sqrt{0+1}}\\\\
=1$$

.
 Oct 24, 2014
 #4
avatar+17771 
0

Ignore my answer for #18; I messed up!

 Oct 24, 2014
 #5
avatar+17771 
0

I will go back to my original analysis, except for the last step; it has a limit of π/2, not 1.

 Oct 24, 2014
 #6
avatar+17771 
+5

My argument for #20:

As x → π/2, tan(x) → ∞.

So, as x → ∞, invTan(x) → π/2.

As x → π/2, sin(x)  → 1

 Oct 24, 2014
 #7
avatar+27794 
+5

limits

 

.

 Oct 24, 2014
 #8
avatar+17771 
+5
Best Answer

My argument for #22:

As x→0+, ln(x) → -∞.

When does tan(x) → -∞?

As x → -π/2 (from the plus side), tan(x) → -∞.

So, as tan(x) → -∞ (from the plus side), x → -π/2 

So, as x → -∞, invTan(x) →  -π/2 

So, the limit is  -π/2 

geno3141 Oct 24, 2014
 #9
avatar+1832 
0

sorry but I cant understand 18 

 Oct 24, 2014

7 Online Users

avatar