+0

# Limits

0
5
11870
1

The displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion s = 2 sin πt + 4 cos πt, where t is measured in seconds. (Round your answers to two decimal places.)

(a) Find the average velocity during each time period.

i. [1,2]

ii. [1,1.1]

iii. [1.1.01]

iv. [1.1.001]

(b) Find the instaneous velocity of the particle when t=1

Guest Mar 5, 2015

### Best Answer

#1
+92254
+5

The displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion s = 2 sin πt + 4 cos πt, where t is measured in seconds. (Round your answers to two decimal places.)

(a) Find the average velocity during each time period.

i. [1,2]

$$\\s(1)=2sin(\pi *1)+4cos(\pi *1)\\ s(1)=2sin(\pi)+4cos(\pi)\\ s(1)=0+4*-1\\ s(1)=-4\\\\ \\s(2)=2sin(\pi *2)+4cos(\pi *2)\\ s(2)=2sin(2\pi)+4cos(2\pi)\\ s(2)=0+4*+1\\ s(2)=4\\\\ Average\; velocity=\frac{distance}{time}\\ Average\; velocity=\frac{4--4}{2-1}\\ Average\; velocity=\frac{8}{1}\\ Average\; velocity=8 \;cm/sec$$

ii. [1,1.1]

iii. [1.1.01]

iv. [1.1.001]

(b) Find the instaneous velocity of the particle when t=1

$$\\s=2sin(\pi t)+4cos(\pi t)\\ v(t)=\frac{ds}{dt}=2\pi cos(\pi t)+-4\pi sin(\pi t)\\ v(t)=\frac{ds}{dt}=2\pi cos(\pi t)-4\pi sin(\pi t)\\ v(1)=2\pi cos(\pi*1 )-4\pi sin(\pi *1)\\ v(1)=2\pi *-1 \quad -4\pi *0\\ v(1)=-2\pi \;\;cm/sec\\$$

Melody  Mar 6, 2015
Sort:

### 1+0 Answers

#1
+92254
+5
Best Answer

The displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion s = 2 sin πt + 4 cos πt, where t is measured in seconds. (Round your answers to two decimal places.)

(a) Find the average velocity during each time period.

i. [1,2]

$$\\s(1)=2sin(\pi *1)+4cos(\pi *1)\\ s(1)=2sin(\pi)+4cos(\pi)\\ s(1)=0+4*-1\\ s(1)=-4\\\\ \\s(2)=2sin(\pi *2)+4cos(\pi *2)\\ s(2)=2sin(2\pi)+4cos(2\pi)\\ s(2)=0+4*+1\\ s(2)=4\\\\ Average\; velocity=\frac{distance}{time}\\ Average\; velocity=\frac{4--4}{2-1}\\ Average\; velocity=\frac{8}{1}\\ Average\; velocity=8 \;cm/sec$$

ii. [1,1.1]

iii. [1.1.01]

iv. [1.1.001]

(b) Find the instaneous velocity of the particle when t=1

$$\\s=2sin(\pi t)+4cos(\pi t)\\ v(t)=\frac{ds}{dt}=2\pi cos(\pi t)+-4\pi sin(\pi t)\\ v(t)=\frac{ds}{dt}=2\pi cos(\pi t)-4\pi sin(\pi t)\\ v(1)=2\pi cos(\pi*1 )-4\pi sin(\pi *1)\\ v(1)=2\pi *-1 \quad -4\pi *0\\ v(1)=-2\pi \;\;cm/sec\\$$

Melody  Mar 6, 2015

### 32 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details