+0  
 
0
435
9
avatar+2353 

Good morning ,

 

One of the exercises I encountered is this one;

Let V be the subset of $$\mathbb{R}^4$$ spanned by the vectors

$$v_1 = \begin{pmatrix}
1 \\
-2\\
0\\
3
\end{pmatrix}$$
,$$v_2 = \begin{pmatrix}
2 \\
3 \\
0 \\
-1 \\
\end{pmatrix}$$
,$$v_3 = \begin{pmatrix}
2 \\
-1 \\
2 \\
1 \\
\end{pmatrix}$$

Prove that V is a linear space over $$\mathbb{R}$$

 

So I build an answer based on some other answer I found and was hoping someone would be willing to give some feedback on it. I usually have trouble composing proofs and I'm not sure whether I'm writing pure gibberish or whether this is actually correct.

 

Proof:

$$\begin{array}{lcl} \mbox{Fix arbitrary p,q,r } \in V \mbox{ and } \lambda,\mu \in \mathbb{R} \\
\mbox{Then } l = \alpha_{1l}v_1+\alpha_{2l}v_2 +\alpha_{3l}v_3 \mbox{ for some } \alpha_{1l},\alpha_{2l},\alpha_{3l} \in \mathbb{R}, l \in [p,q,r].\\
\mbox{Let us now verify the ten properties of linear spaces over } \mathbb{R}. \\
\mbox{1. } p+q = \alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3 + \alpha_{1q}v_1+\alpha_{2q}v_2 +\alpha_{3q}v_3\\
= (\alpha_{1p}+\alpha_{1q})v_1+(\alpha_{2p}+\alpha_{2q})v_2 +(\alpha_{3p}+\alpha_{3q})v_3 \in \mathbb{R}\\

\end{array}$$

$$\begin{array}{lcl}
\mbox{2. } p+q = \alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3 + \alpha_{1q}v_1+\alpha_{2q}v_2 +\alpha_{3q}v_3\\
= \alpha_{1q}v_1+\alpha_{2q}v_2 +\alpha_{3q}v_3 + \alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3\\
= q+p \\
\mbox{3. } p+(q+r) = \alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3 + (\alpha_{1q}+\alpha_{1r})v_1+(\alpha_{2q}+\alpha_{2r})v_2 +(\alpha_{3q}+\alpha_{3r})v_3 \\
= (\alpha_{1p}+\alpha_{1q})v_1+(\alpha_{2p}+\alpha_{2q})v_2 +(\alpha_{3p}+\alpha_{3q})v_3 + \alpha_{1r}v_1+\alpha_{2r}v_2 +\alpha_{3r}v_3 \\

\end{array}$$

$$\begin{array}{lcl}
\mbox{4. Let 0 be the zero element of V. Then } 0 = 0v_1+0v_2+0v_3 \in V \mbox{ and } 0+v = v \mbox{ for all } v \in V\\
\mbox{5. Let 0 be the zero element of V and fix an arbitrary } p = \alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3 \mbox{. Let } z:= -\alpha_{1p}v_1-\alpha_{2p}v_2 -\alpha_{3p}v_3 = -p \in V \\
\mbox{Then: }p+z = (\alpha_{1p}-\alpha_{1q})v_1+(\alpha_{2p}-\alpha_{2q})v_2 +(\alpha_{3p}-\alpha_{3q})v_3 = 0\\
\end{array}$$

$$\begin{array}{lcl}
\mbox{6. } \lambda(\alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3) = (\lambda \alpha_{1p})v_1+ (\lambda \alpha_{2p})v_2 + (\lambda \alpha_{3p})v_3 \in V \\
\mbox{7. } \lambda(p+q)= \lambda(\alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3 + \alpha_{1q}v_1+\alpha_{2q}v_2 +\alpha_{3q}v_3) = \lambda(\alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3) + \lambda(\alpha_{1q}v_1+\alpha_{2q}v_2 +\alpha_{3q}v_3) = \lambda p + \lambda q\\
\end{array}$$

$$\begin{array}{lcl}
\mbox{8. } (\lambda + \mu)p = (\lambda + \mu)(\alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3) = \lambda(\alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3) + \mu(\alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3) = \lambda p + \mu p\\
\mbox{9. }\lambda( \mu p) = \lambda ( \mu (\alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3) = \lambda \mu (\alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3) = \mu \lambda (\alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3) = \mu (\lambda (\alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3)) = \mu (\lambda p)\\
\end{array}$$

$$\mbox{10. } 1 \times p = 1(\alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3) = \alpha_{1p}v_1+\alpha_{2p}v_2 +\alpha_{3p}v_3 = p$$

$$\begin{array}{lcl}\mbox{ Since V follows all ten conditions of a linear space over } \mathbb{R} \mbox{ , V is a linear space over } \mathbb{R}\\
\mbox{q.e.d.}
\end{array}$$

Reinout 

reinout-g  Jun 8, 2014

Best Answer 

 #5
avatar+11847 
+14

ah ha ! thank u CPhill !lol!

rosala  Jun 8, 2014
Sort: 

9+0 Answers

 #1
avatar+92174 
+5

Don't worry Reinout.  Rosala will be along soon.  she is bound to have some feedback for you.  

Melody  Jun 8, 2014
 #2
avatar+2353 
0

Haha, I hope so!

I can't do it without her 'all the best'

reinout-g  Jun 8, 2014
 #3
avatar+11847 
+14

i knew it reinout , i knew it ! u wont be able to work without my "all the best " ! lol! i dont know why reinout , i am starting to think that do u have einsteins dna in ur blood or what !lol!i just cant understand ur maths , when u write something i dont get it , is it the ques or the answer !lol!by the way "all the best " for this one too!

rosala  Jun 8, 2014
 #4
avatar+85614 
+5

Good sniff out, rosala.....reinout is INDEED a distant cousin of the famous Dr. Einstein...

 

But, I suspect that it's all relative...........

 

CPhill  Jun 8, 2014
 #5
avatar+11847 
+14
Best Answer

ah ha ! thank u CPhill !lol!

rosala  Jun 8, 2014
 #6
avatar+2353 
+5

Haha, imagine how brilliant the people are that can actually answer my questions!

 

 

p.s. Nice joke CPhill, I almost missed it 

reinout-g  Jun 8, 2014
 #7
avatar+11847 
+9

i know that reinout ! and one day ill answer all ur questions ! 

rosala  Jun 8, 2014
 #8
avatar+2353 
0

One day you probably will .

Given that you'll start a mathematical study off course .

reinout-g  Jun 8, 2014
 #9
avatar+11847 
+9

oh surely i will start but only if maths is interesting for me when i grow ! lol!

rosala  Jun 8, 2014

9 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details