Good morning ,
One of the exercises I encountered is this one;
Let V be the subset of R4 spanned by the vectors
v1=(1−203),v2=(230−1),v3=(2−121)
Prove that V is a linear space over R
So I build an answer based on some other answer I found and was hoping someone would be willing to give some feedback on it. I usually have trouble composing proofs and I'm not sure whether I'm writing pure gibberish or whether this is actually correct.
Proof:
Fix arbitrary p,q,r ∈V and λ,μ∈RThen l=α1lv1+α2lv2+α3lv3 for some α1l,α2l,α3l∈R,l∈[p,q,r].Let us now verify the ten properties of linear spaces over R.1. p+q=α1pv1+α2pv2+α3pv3+α1qv1+α2qv2+α3qv3=(α1p+α1q)v1+(α2p+α2q)v2+(α3p+α3q)v3∈R
2. p+q=α1pv1+α2pv2+α3pv3+α1qv1+α2qv2+α3qv3=α1qv1+α2qv2+α3qv3+α1pv1+α2pv2+α3pv3=q+p3. p+(q+r)=α1pv1+α2pv2+α3pv3+(α1q+α1r)v1+(α2q+α2r)v2+(α3q+α3r)v3=(α1p+α1q)v1+(α2p+α2q)v2+(α3p+α3q)v3+α1rv1+α2rv2+α3rv3
4. Let 0 be the zero element of V. Then 0=0v1+0v2+0v3∈V and 0+v=v for all v∈V5. Let 0 be the zero element of V and fix an arbitrary p=α1pv1+α2pv2+α3pv3. Let z:=−α1pv1−α2pv2−α3pv3=−p∈VThen: p+z=(α1p−α1q)v1+(α2p−α2q)v2+(α3p−α3q)v3=0
6. λ(α1pv1+α2pv2+α3pv3)=(λα1p)v1+(λα2p)v2+(λα3p)v3∈V7. λ(p+q)=λ(α1pv1+α2pv2+α3pv3+α1qv1+α2qv2+α3qv3)=λ(α1pv1+α2pv2+α3pv3)+λ(α1qv1+α2qv2+α3qv3)=λp+λq
8. (λ+μ)p=(λ+μ)(α1pv1+α2pv2+α3pv3)=λ(α1pv1+α2pv2+α3pv3)+μ(α1pv1+α2pv2+α3pv3)=λp+μp9. λ(μp)=λ(μ(α1pv1+α2pv2+α3pv3)=λμ(α1pv1+α2pv2+α3pv3)=μλ(α1pv1+α2pv2+α3pv3)=μ(λ(α1pv1+α2pv2+α3pv3))=μ(λp)
10. 1×p=1(α1pv1+α2pv2+α3pv3)=α1pv1+α2pv2+α3pv3=p
Since V follows all ten conditions of a linear space over R , V is a linear space over Rq.e.d.
Reinout
Don't worry Reinout. Rosala will be along soon. she is bound to have some feedback for you.
i knew it reinout , i knew it ! u wont be able to work without my "all the best " ! lol! i dont know why reinout , i am starting to think that do u have einsteins dna in ur blood or what !lol!i just cant understand ur maths , when u write something i dont get it , is it the ques or the answer !lol!by the way "all the best " for this one too!
Good sniff out, rosala.....reinout is INDEED a distant cousin of the famous Dr. Einstein...
But, I suspect that it's all relative...........
Haha, imagine how brilliant the people are that can actually answer my questions!
p.s. Nice joke CPhill, I almost missed it