Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1400
9
avatar+2354 

Good morning ,

 

One of the exercises I encountered is this one;

Let V be the subset of R4 spanned by the vectors

v1=(1203),v2=(2301),v3=(2121)

Prove that V is a linear space over R

 

So I build an answer based on some other answer I found and was hoping someone would be willing to give some feedback on it. I usually have trouble composing proofs and I'm not sure whether I'm writing pure gibberish or whether this is actually correct.

 

Proof:

Fix arbitrary p,q,r V and λ,μRThen l=α1lv1+α2lv2+α3lv3 for some α1l,α2l,α3lR,l[p,q,r].Let us now verify the ten properties of linear spaces over R.1. p+q=α1pv1+α2pv2+α3pv3+α1qv1+α2qv2+α3qv3=(α1p+α1q)v1+(α2p+α2q)v2+(α3p+α3q)v3R

2. p+q=α1pv1+α2pv2+α3pv3+α1qv1+α2qv2+α3qv3=α1qv1+α2qv2+α3qv3+α1pv1+α2pv2+α3pv3=q+p3. p+(q+r)=α1pv1+α2pv2+α3pv3+(α1q+α1r)v1+(α2q+α2r)v2+(α3q+α3r)v3=(α1p+α1q)v1+(α2p+α2q)v2+(α3p+α3q)v3+α1rv1+α2rv2+α3rv3

4. Let 0 be the zero element of V. Then 0=0v1+0v2+0v3V and 0+v=v for all vV5. Let 0 be the zero element of V and fix an arbitrary p=α1pv1+α2pv2+α3pv3. Let z:=α1pv1α2pv2α3pv3=pVThen: p+z=(α1pα1q)v1+(α2pα2q)v2+(α3pα3q)v3=0

6. λ(α1pv1+α2pv2+α3pv3)=(λα1p)v1+(λα2p)v2+(λα3p)v3V7. λ(p+q)=λ(α1pv1+α2pv2+α3pv3+α1qv1+α2qv2+α3qv3)=λ(α1pv1+α2pv2+α3pv3)+λ(α1qv1+α2qv2+α3qv3)=λp+λq

8. (λ+μ)p=(λ+μ)(α1pv1+α2pv2+α3pv3)=λ(α1pv1+α2pv2+α3pv3)+μ(α1pv1+α2pv2+α3pv3)=λp+μp9. λ(μp)=λ(μ(α1pv1+α2pv2+α3pv3)=λμ(α1pv1+α2pv2+α3pv3)=μλ(α1pv1+α2pv2+α3pv3)=μ(λ(α1pv1+α2pv2+α3pv3))=μ(λp)

10. 1×p=1(α1pv1+α2pv2+α3pv3)=α1pv1+α2pv2+α3pv3=p

 Since V follows all ten conditions of a linear space over R , V is a linear space over Rq.e.d.

Reinout 

 Jun 8, 2014

Best Answer 

 #5
avatar+11912 
+14

ah ha ! thank u CPhill !lol!

 Jun 8, 2014
 #1
avatar+118702 
+5

Don't worry Reinout.  Rosala will be along soon.  she is bound to have some feedback for you.  

 Jun 8, 2014
 #2
avatar+2354 
0

Haha, I hope so!

I can't do it without her 'all the best'

 Jun 8, 2014
 #3
avatar+11912 
+14

i knew it reinout , i knew it ! u wont be able to work without my "all the best " ! lol! i dont know why reinout , i am starting to think that do u have einsteins dna in ur blood or what !lol!i just cant understand ur maths , when u write something i dont get it , is it the ques or the answer !lol!by the way "all the best " for this one too!

 Jun 8, 2014
 #4
avatar+130477 
+5

Good sniff out, rosala.....reinout is INDEED a distant cousin of the famous Dr. Einstein...

 

But, I suspect that it's all relative...........

 

 Jun 8, 2014
 #5
avatar+11912 
+14
Best Answer

ah ha ! thank u CPhill !lol!

rosala Jun 8, 2014
 #6
avatar+2354 
+5

Haha, imagine how brilliant the people are that can actually answer my questions!

 

 

p.s. Nice joke CPhill, I almost missed it 

 Jun 8, 2014
 #7
avatar+11912 
+9

i know that reinout ! and one day ill answer all ur questions ! 

 Jun 8, 2014
 #8
avatar+2354 
0

One day you probably will .

Given that you'll start a mathematical study off course .

 Jun 8, 2014
 #9
avatar+11912 
+9

oh surely i will start but only if maths is interesting for me when i grow ! lol!

 Jun 8, 2014

1 Online Users