+0  
 
+5
798
2
avatar

if lnx=1/x, then what is ln1/x=?

Guest Dec 9, 2015

Best Answer 

 #1
avatar+19835 
+15

if lnx=1/x, then what is ln1/x=?

 

\(\begin{array}{rcll} \ln{(x)} =\frac{1}{x} \qquad \ln{( \frac{1}{x} )} = \ ? \end{array}\)

 

\( \begin{array}{rcll} \ln{( \frac{1}{x} )} &=& \ln{( 1 )} -\ln{( x )} \qquad & | \qquad \ln{( 1 )} = 0\\ &=& 0 -\ln{( x )} \\ &=& -\ln{( x )} \qquad & | \qquad \ln{(x)} =\frac{1}{x}\\ &=& -\frac{1}{x} \\ \mathbf{ \ln{( \frac{1}{x} )} } & \mathbf{=} & \mathbf{ -\frac{1}{x} } \end{array}\)

 

 

excursus

\(\begin{array}{rcll} \ln{(x)} = \frac{1}{x} \qquad x = \ ? \end{array}\)

 

\(\begin{array}{rcll} \ln{(x)} &=& \frac{1}{x} \\ \ln{(x^x)} &=& 1 \qquad & | \qquad e^{()} \\ \mathbf{x^x} &\mathbf{=}& \mathbf{e} \\\\ e^{\ln{(x^x)}}&=& e \qquad \ln{(x^x)} = 1\\ e^{ x\cdot \ln{(x)} } &=& e\\ x\cdot \ln{(x)} &=& 1 \qquad z = \ln{(x)} \\ x\cdot z &=& 1 \qquad e^z = x \\ e^z\cdot z &=& 1 \\\\ z &=& W(1) \\ e^{\ln{(x)}} &=& e^{W(1)}\\ x &=& e^{W(1)} \qquad \text{or}\\\\ x\cdot z &=& 1 \\ x &=& \frac{1}{z} \qquad z = W(1) \\ x &=& \frac{1}{W(1)}\\\\ \end{array}\\ \small{ W(1) = 0.5671432904097838729999686622103555497538157871865125081351310792230457930866\dots\\ x = \frac{1}{W(1)} = 1.7632228343518967102252017769517070804360179866674736\dots\\\\ W(1) = 0.5671432904\dots \text{ is called the omega constant }\\ \text{where } W(x) \text{ is the Lambert W-function } }\)

 

laugh

heureka  Dec 9, 2015
 #1
avatar+19835 
+15
Best Answer

if lnx=1/x, then what is ln1/x=?

 

\(\begin{array}{rcll} \ln{(x)} =\frac{1}{x} \qquad \ln{( \frac{1}{x} )} = \ ? \end{array}\)

 

\( \begin{array}{rcll} \ln{( \frac{1}{x} )} &=& \ln{( 1 )} -\ln{( x )} \qquad & | \qquad \ln{( 1 )} = 0\\ &=& 0 -\ln{( x )} \\ &=& -\ln{( x )} \qquad & | \qquad \ln{(x)} =\frac{1}{x}\\ &=& -\frac{1}{x} \\ \mathbf{ \ln{( \frac{1}{x} )} } & \mathbf{=} & \mathbf{ -\frac{1}{x} } \end{array}\)

 

 

excursus

\(\begin{array}{rcll} \ln{(x)} = \frac{1}{x} \qquad x = \ ? \end{array}\)

 

\(\begin{array}{rcll} \ln{(x)} &=& \frac{1}{x} \\ \ln{(x^x)} &=& 1 \qquad & | \qquad e^{()} \\ \mathbf{x^x} &\mathbf{=}& \mathbf{e} \\\\ e^{\ln{(x^x)}}&=& e \qquad \ln{(x^x)} = 1\\ e^{ x\cdot \ln{(x)} } &=& e\\ x\cdot \ln{(x)} &=& 1 \qquad z = \ln{(x)} \\ x\cdot z &=& 1 \qquad e^z = x \\ e^z\cdot z &=& 1 \\\\ z &=& W(1) \\ e^{\ln{(x)}} &=& e^{W(1)}\\ x &=& e^{W(1)} \qquad \text{or}\\\\ x\cdot z &=& 1 \\ x &=& \frac{1}{z} \qquad z = W(1) \\ x &=& \frac{1}{W(1)}\\\\ \end{array}\\ \small{ W(1) = 0.5671432904097838729999686622103555497538157871865125081351310792230457930866\dots\\ x = \frac{1}{W(1)} = 1.7632228343518967102252017769517070804360179866674736\dots\\\\ W(1) = 0.5671432904\dots \text{ is called the omega constant }\\ \text{where } W(x) \text{ is the Lambert W-function } }\)

 

laugh

heureka  Dec 9, 2015
 #2
avatar+92905 
+5

Thanks Heureka,

 

That excursion was really convoluted.

 

Intriguing - but convoluted.    laughindecisionlaugh

Melody  Dec 9, 2015

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.