We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

A loan for $150,000 for 30 years at 6% compounded semi-annually. What is the monthly payment of this loan and at what payment will the loan be reduced to approximately $75,000, or about half the original principal? Thank you for help.

Guest Apr 19, 2018

#1**0 **

The first thing you have to do is to convert 6% from compounded semi-annually to compounded monthly. And you can do that as follows:

1.03^(1/6) =1.004938622 - 1 x 100 =0.4938622% - This is the monthly compound rate.

0.4938622 x 12 =5.9263464% - This is the annual rate compounded monthly.

I shall use this amortization schedule to give you all the answers you want:

**http://www.calculator.net/amortization-calculator.html?cloanamount=150000&cloanterm=30&cinterestrate=5.9263464&printit=0&x=55&y=25**

All the answers to your question are in the above amortization schedule:

Look at the top and you will see the monthly payment **= $892.24**

Look at the last column of the table where it says "Ending Balance". Go down that column until you see a balance closest to $75,000, and, quickly, you will see that after the **251st payment** the balance of the loan will be **=$75,064.79**, which the closest to $75,000 as you can get.

I hope this answers all your questions. Good luck.

Guest Apr 19, 2018