+0  
 
0
679
2
avatar

find the local minimum of f(x)=2x^3-30x^2+96x+9

 Sep 9, 2015

Best Answer 

 #2
avatar+130514 
+5

f(x)=2x^3-30x^2+96x+9

 

Take the derivative and set to 0

 

f ' (x)  =  6x^2 - 60x + 96  = 0      divide everything by 6

 

x^2 - 10x + 16  = 0     factor

 

(x - 8) ( x- 2) = 0     so...the critical points are x = 8 and x = 2

 

Take the second derivative

 

f '' (x)  =  2x - 10

 

When x = 8,   f " (x) > 0   so this is a minimum at (8, -119)

 

When x = 2,   f " (x) < 0    so this is a max at (2, 97)

 

Here's a graph :   https://www.desmos.com/calculator/w1v9hktjpi

 

 

 

 

cool cool cool

 Sep 9, 2015
 #1
avatar
+5

find the local minimum of f(x)=2x^3-30x^2+96x+9

 

min{2 x^3-30 x^2+96 x+9} = -119 at x = 8

 Sep 9, 2015
 #2
avatar+130514 
+5
Best Answer

f(x)=2x^3-30x^2+96x+9

 

Take the derivative and set to 0

 

f ' (x)  =  6x^2 - 60x + 96  = 0      divide everything by 6

 

x^2 - 10x + 16  = 0     factor

 

(x - 8) ( x- 2) = 0     so...the critical points are x = 8 and x = 2

 

Take the second derivative

 

f '' (x)  =  2x - 10

 

When x = 8,   f " (x) > 0   so this is a minimum at (8, -119)

 

When x = 2,   f " (x) < 0    so this is a max at (2, 97)

 

Here's a graph :   https://www.desmos.com/calculator/w1v9hktjpi

 

 

 

 

cool cool cool

CPhill Sep 9, 2015

2 Online Users

avatar