+0  
 
+5
727
2
avatar

how do i change the Log's base?

 Mar 29, 2016
 #1
avatar
0

Example: Take Log(125) to base 5 log:

 

Log(125) / Log(5)=3, so that:

5^3=125

 Mar 29, 2016
 #2
avatar+33661 
0

More generally;

 

If \(y=\log_{10}x\)  then \(10^y=x\)

 

so

 

\(\log_b{10^y}=\log_b{x}\\\\y\log_b{10}=\log_b x\\\\y=\frac{\log_b x}{\log_b{10}}\)

 Mar 29, 2016

2 Online Users

avatar