+0  
 
0
3204
3
avatar

Log base pi (41) what is the answer

 Apr 27, 2015

Best Answer 

 #3
avatar+118687 
+5

$${{\mathtt{\pi}}}^{{\mathtt{x}}} = {\mathtt{41}} \Rightarrow {\mathtt{x}} = {\frac{{ln}{\left({\mathtt{41}}\right)}}{{ln}{\left({\mathtt{\pi}}\right)}}} \Rightarrow {\mathtt{x}} = {\mathtt{3.244\: \!059\: \!679\: \!588\: \!781\: \!6}}$$

 

yes, it works too :)

 Apr 28, 2015
 #1
avatar+23252 
+5

logπ(41)

Use the change of base formula:  =  log(41) / log(π)   ...   and use a calculator   ...

 Apr 27, 2015
 #2
avatar+1904 
+5

$${{\mathtt{\pi}}}^{{\mathtt{x}}} = {\mathtt{41}}$$

 

Put in calculator and solve.

 Apr 27, 2015
 #3
avatar+118687 
+5
Best Answer

$${{\mathtt{\pi}}}^{{\mathtt{x}}} = {\mathtt{41}} \Rightarrow {\mathtt{x}} = {\frac{{ln}{\left({\mathtt{41}}\right)}}{{ln}{\left({\mathtt{\pi}}\right)}}} \Rightarrow {\mathtt{x}} = {\mathtt{3.244\: \!059\: \!679\: \!588\: \!781\: \!6}}$$

 

yes, it works too :)

Melody Apr 28, 2015

4 Online Users

avatar