+0  
 
0
564
1
avatar

log(logi)?

Guest Jun 2, 2017
 #1
avatar+7026 
0

Funny question :)

I assume that log is the natural log and I will use ln as the natural log below.

\(\ln(\ln(i))\\ = \ln\left(\dfrac{1}{2}\cdot\ln(-1)\right)\\ = -\ln 2 + \ln(i\cdot\pi)\\ =-\ln2+\ln i + \ln \pi\\ =\ln\pi-\ln2+\dfrac{1}{2}\ln(-1)\\ =\ln\pi - \ln 2 + \dfrac{\pi}{2}\cdot i\)

I am going to assume that log is log base 10 below and do it again :)

\(\quad\log_{10}\left(\log_{10}(i)\right)\\ =\dfrac{\ln(\frac{\ln i}{\ln10})}{\ln 10}\\ =\dfrac{\ln\left(\ln(i)\right)-\ln\left(\ln 10\right)}{\ln 10}\\ =\dfrac{\ln(i\cdot \pi)-\ln(\ln 10)}{\ln10}\\ =\dfrac{i\cdot \pi+\ln \pi-\ln(\ln10)}{\ln10}\)

MaxWong  Jun 3, 2017

37 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.