We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+5
661
2
avatar+41 


 

X=?

Y=?

 Feb 8, 2016

Best Answer 

 #1
avatar+105606 
+10

Hi   Danielr_ddrp     

Welcome to the web2.0calc forum       laugh

 

\(log_2(x+4)-\frac{1}{2}(log_2y)=2\\ log_2(x+4)-log_2(y)^{1/2}=2\\ log_2\frac{x+4}{(y)^{1/2}}=log_24\\ \frac{x+4}{(y)^{1/2}}=4\\ x+4=4(y)^{1/2}\\ x^2+8x+16=16y\\ 16y=x^2+8x+16\)

 

 

\(2log_2x-log_2(y-1)=1\\ log_2x^2-log_2(y-1)=log_22\\ log_2\frac{x^2}{y-1}=log_22\\ \frac{x^2}{y-1}=2\\ x^2=2(y-1)\\ x^2=2y-2\\ x^2+2=2y\\ 8(x^2+2)=8*2y\\ 16y=8x^2+16\\\)

 

SO

 

\(x^2+8x+16=8x^2+16\\ x^2+8x=8x^2\\ 7x^2-8x=0\\ x(7x-8)=0\\ x=0 \;\;or\;\; x=\frac{8}{7}\\ \)

 

Log 0 is undefined so x=0 is a nonsense answer.

 

\(If\;\;x=\frac{8}{7}\;\;\;then\\ 16y=8*\frac{64}{49}+16\\ y=\frac{81}{49}\;\;\;(or\;\;\;1\frac{32}{49})\\ so\;\;x=\frac{8}{7}\;\;\;and\;\; y=\frac{81}{49} \)

 

I have checked this answer by substituting the values into the original equation.

It is correct :)

 Feb 8, 2016
 #1
avatar+105606 
+10
Best Answer

Hi   Danielr_ddrp     

Welcome to the web2.0calc forum       laugh

 

\(log_2(x+4)-\frac{1}{2}(log_2y)=2\\ log_2(x+4)-log_2(y)^{1/2}=2\\ log_2\frac{x+4}{(y)^{1/2}}=log_24\\ \frac{x+4}{(y)^{1/2}}=4\\ x+4=4(y)^{1/2}\\ x^2+8x+16=16y\\ 16y=x^2+8x+16\)

 

 

\(2log_2x-log_2(y-1)=1\\ log_2x^2-log_2(y-1)=log_22\\ log_2\frac{x^2}{y-1}=log_22\\ \frac{x^2}{y-1}=2\\ x^2=2(y-1)\\ x^2=2y-2\\ x^2+2=2y\\ 8(x^2+2)=8*2y\\ 16y=8x^2+16\\\)

 

SO

 

\(x^2+8x+16=8x^2+16\\ x^2+8x=8x^2\\ 7x^2-8x=0\\ x(7x-8)=0\\ x=0 \;\;or\;\; x=\frac{8}{7}\\ \)

 

Log 0 is undefined so x=0 is a nonsense answer.

 

\(If\;\;x=\frac{8}{7}\;\;\;then\\ 16y=8*\frac{64}{49}+16\\ y=\frac{81}{49}\;\;\;(or\;\;\;1\frac{32}{49})\\ so\;\;x=\frac{8}{7}\;\;\;and\;\; y=\frac{81}{49} \)

 

I have checked this answer by substituting the values into the original equation.

It is correct :)

Melody Feb 8, 2016
 #2
avatar
0

Hello smiley

 Feb 8, 2016

4 Online Users

avatar