+0  
 
0
279
2
avatar

log x = logx (e^4), what is x

Guest Nov 10, 2014

Best Answer 

 #2
avatar+91510 
+10

Maybe you mean

$$\\lnx=log_x(e^4)\\\\
x^{lnx}=x^{log_x(e^4)}\\\\
x^{lnx}=e^4\\\\
ln(x^{lnx})=ln{e^4}\\\\
(lnx)(lnx)=4lne\\\\
(lnx)^2=4\\\\
lnx=2\;\;or\;\;lnx=-2\\\\
x=e^2\;\;\;or\;\;\;x=\frac{1}{e^2}$$

Melody  Nov 10, 2014
Sort: 

2+0 Answers

 #1
avatar+91510 
+5

$$\\log x = logx \times (e^4)\\$$

there is no soln to this

-------------------------------

Perhaps you mean

$$\\logx = log[x (e^4)]\\
logx = logx +log(e^4)\\$$

No - still no solutions

Melody  Nov 10, 2014
 #2
avatar+91510 
+10
Best Answer

Maybe you mean

$$\\lnx=log_x(e^4)\\\\
x^{lnx}=x^{log_x(e^4)}\\\\
x^{lnx}=e^4\\\\
ln(x^{lnx})=ln{e^4}\\\\
(lnx)(lnx)=4lne\\\\
(lnx)^2=4\\\\
lnx=2\;\;or\;\;lnx=-2\\\\
x=e^2\;\;\;or\;\;\;x=\frac{1}{e^2}$$

Melody  Nov 10, 2014

27 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details