+0  
 
0
474
2
avatar

log x = logx (e^4), what is x

Guest Nov 10, 2014

Best Answer 

 #2
avatar+93346 
+10

Maybe you mean

$$\\lnx=log_x(e^4)\\\\
x^{lnx}=x^{log_x(e^4)}\\\\
x^{lnx}=e^4\\\\
ln(x^{lnx})=ln{e^4}\\\\
(lnx)(lnx)=4lne\\\\
(lnx)^2=4\\\\
lnx=2\;\;or\;\;lnx=-2\\\\
x=e^2\;\;\;or\;\;\;x=\frac{1}{e^2}$$

Melody  Nov 10, 2014
 #1
avatar+93346 
+5

$$\\log x = logx \times (e^4)\\$$

there is no soln to this

-------------------------------

Perhaps you mean

$$\\logx = log[x (e^4)]\\
logx = logx +log(e^4)\\$$

No - still no solutions

Melody  Nov 10, 2014
 #2
avatar+93346 
+10
Best Answer

Maybe you mean

$$\\lnx=log_x(e^4)\\\\
x^{lnx}=x^{log_x(e^4)}\\\\
x^{lnx}=e^4\\\\
ln(x^{lnx})=ln{e^4}\\\\
(lnx)(lnx)=4lne\\\\
(lnx)^2=4\\\\
lnx=2\;\;or\;\;lnx=-2\\\\
x=e^2\;\;\;or\;\;\;x=\frac{1}{e^2}$$

Melody  Nov 10, 2014

26 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.