+0  
 
0
93
3
avatar

Evaluate \(log_{\sqrt[3]{5}}125 \)

Guest Mar 22, 2018
 #1
avatar+87657 
+1

We  can write this in exponential form

 

[5^(1/3) ] ^x  =  125

 

(5)^(x/3)  = (5)^3

 

Since the bases are the same.....we can solve for the exponents

 

x/3  = 3         multiply both sides by 3

 

x  =

 

9        and that's the evaluation for the original expression

 

 

cool cool cool

CPhill  Mar 22, 2018
 #2
avatar
0

Or you can use the definition of a logarithm ie if logb = x then a= b

 

 

so we have( 51/3) = 125 ( = 53 )

 

Therefore x = 9

Guest Mar 22, 2018
 #3
avatar+19853 
0

Logarithm Question

Evaluate

\(\huge{ \log_{\sqrt[3]{5}}125 } \)

\huge{ \log_{\sqrt[3]{5}}125 }

 

Formula:

\(\begin{array}{|rcll|} \hline \log_b(x) &=& \dfrac{\log_c(x)}{\log_c(b)} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline && \log_{\sqrt[3]{5}}125 \\\\ &=& \dfrac{ \ln(125) } { \ln(\sqrt[3]{5}) } \\\\ &=& \dfrac{ \ln(5^3) } { \ln(5^{\frac13}) } \\\\ &=& \dfrac{ 3\cdot \ln(5) } {\frac13\cdot \ln(5) } \\\\ &=& \dfrac{ 3 } {\frac13 } \\\\ &=& 3\cdot \frac31 \\\\ &=& 9 \\ \hline \end{array}\)

heureka  Mar 23, 2018

10 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.