+0  
 
0
48
3
avatar

Evaluate \(log_{\sqrt[3]{5}}125 \)

Guest Mar 22, 2018
Sort: 

3+0 Answers

 #1
avatar+85764 
+1

We  can write this in exponential form

 

[5^(1/3) ] ^x  =  125

 

(5)^(x/3)  = (5)^3

 

Since the bases are the same.....we can solve for the exponents

 

x/3  = 3         multiply both sides by 3

 

x  =

 

9        and that's the evaluation for the original expression

 

 

cool cool cool

CPhill  Mar 22, 2018
 #2
avatar
0

Or you can use the definition of a logarithm ie if logb = x then a= b

 

 

so we have( 51/3) = 125 ( = 53 )

 

Therefore x = 9

Guest Mar 22, 2018
 #3
avatar+19207 
0

Logarithm Question

Evaluate

\(\huge{ \log_{\sqrt[3]{5}}125 } \)

\huge{ \log_{\sqrt[3]{5}}125 }

 

Formula:

\(\begin{array}{|rcll|} \hline \log_b(x) &=& \dfrac{\log_c(x)}{\log_c(b)} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline && \log_{\sqrt[3]{5}}125 \\\\ &=& \dfrac{ \ln(125) } { \ln(\sqrt[3]{5}) } \\\\ &=& \dfrac{ \ln(5^3) } { \ln(5^{\frac13}) } \\\\ &=& \dfrac{ 3\cdot \ln(5) } {\frac13\cdot \ln(5) } \\\\ &=& \dfrac{ 3 } {\frac13 } \\\\ &=& 3\cdot \frac31 \\\\ &=& 9 \\ \hline \end{array}\)

heureka  Mar 23, 2018

27 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details