+0  
 
0
667
2
avatar

$${\mathtt{100}} = {\mathtt{10}}{\mathtt{\,\times\,}}{log}_{10}\left({\frac{{\mathtt{z}}}{{{\mathtt{10}}}^{-{\mathtt{12}}}}}\right)$$ I know the answer is $${{\mathtt{10}}}^{-{\mathtt{2}}}$$ but how do I get to it? Thank you.

 Nov 7, 2014

Best Answer 

 #2
avatar+118723 
+5

$$\begin{array}{rll}
100&=&10\times log_{10}\left(\frac{z}{10^{-12}}\right)\\\\
10&=&log_{10}\left(\frac{z}{10^{-12}}\right)\\\\
10^{10}&=&10^{log_{10}\left(\frac{z}{10^{-12}}\right)}\\\\
10^{10}&=&\frac{z}{10^{-12}}\\\\
10^{10}\times 10^{-12}&=&z\\\\
z&=&10^{10-12}\\\\
z&=&10^{-2}
\end{array}$$

.
 Nov 8, 2014
 #1
avatar+23254 
+5

100  =  10 · log( z / 10^-12)  

100  =  10 · log( 10^12 · z ) 

100  =  10 · [ log( 10^12) + log( z ) ]                      (When numbers are multiplied, the logs are added.)

100  =  10 · [ 12 · log( 10 ) + log( z ) ]                    (Exponents come out as multipliers.)

100  =  10 · [ 12 + log( z ) ]                                    (log( 10 ) = 1   --->    12 · log( 10 )  =  12 · 1 =  12 )

100  =  120 + 10 · log( z )                                       (Distribute the 10.)

-20  =  10 · log( z )                                                 (Subtract 120 from both sides.)

-2  =  log( z )                                                         (Divide both sides by 10.)

--->   z  =  10^-2                                                   (Switch from log form to exponential form.)

 Nov 7, 2014
 #2
avatar+118723 
+5
Best Answer

$$\begin{array}{rll}
100&=&10\times log_{10}\left(\frac{z}{10^{-12}}\right)\\\\
10&=&log_{10}\left(\frac{z}{10^{-12}}\right)\\\\
10^{10}&=&10^{log_{10}\left(\frac{z}{10^{-12}}\right)}\\\\
10^{10}&=&\frac{z}{10^{-12}}\\\\
10^{10}\times 10^{-12}&=&z\\\\
z&=&10^{10-12}\\\\
z&=&10^{-2}
\end{array}$$

Melody Nov 8, 2014

0 Online Users