+0  
 
0
863
3
avatar

2 log2 x - log2 (x-1/2) = -log1/3 3

I need to solve for x. The logarithmic bases are not alike to one another, so I'm not sure what to do. I know that to solve, I have to use the quotient rule for logarithmic equations, but what do I do then? I just need to see the formula of this problem, please help me.

 Nov 23, 2015

Best Answer 

 #1
avatar+130555 
+10

2 log2 x - log2 (x-1/2) = -log1/3 3       note  that     - log1/3 3     actually evaluates to  -[ -1 ]   = 1

 

So we have

 

2 log2 x - log2 (x-1/2)   = 1       and we can write

 

log2 x2  - log2 ( x - 1/2)   = 1       and by a property of logs  we have

 

log2  [ ( x^2 ) / (x - 1/2)]    =  1    and in exponential form we have

 

2^1  =  ( x^2 ) / (x - 1/2)

 

2  = ( x^2) / ( x - 1/2)         multiply both sides by  x - 1/2

 

2( x - 1/2)  = x^2

 

2x - 1   = x^2       simplify

 

x^2 - 2x + 1  =  0        factor

 

(x -1 ) ( x - 1)  = 0      and setting each factor to 0   .....we have that   x = 1

 

Check that

 

2 log2 (1) - log2 (1-1/2)   = 1 

 

2 * 0   -  log2 (1/2)  = 1

 

0  -  (-1)   = 1

 

1  =   1

 

 

 


cool cool cool

 Nov 23, 2015
 #1
avatar+130555 
+10
Best Answer

2 log2 x - log2 (x-1/2) = -log1/3 3       note  that     - log1/3 3     actually evaluates to  -[ -1 ]   = 1

 

So we have

 

2 log2 x - log2 (x-1/2)   = 1       and we can write

 

log2 x2  - log2 ( x - 1/2)   = 1       and by a property of logs  we have

 

log2  [ ( x^2 ) / (x - 1/2)]    =  1    and in exponential form we have

 

2^1  =  ( x^2 ) / (x - 1/2)

 

2  = ( x^2) / ( x - 1/2)         multiply both sides by  x - 1/2

 

2( x - 1/2)  = x^2

 

2x - 1   = x^2       simplify

 

x^2 - 2x + 1  =  0        factor

 

(x -1 ) ( x - 1)  = 0      and setting each factor to 0   .....we have that   x = 1

 

Check that

 

2 log2 (1) - log2 (1-1/2)   = 1 

 

2 * 0   -  log2 (1/2)  = 1

 

0  -  (-1)   = 1

 

1  =   1

 

 

 


cool cool cool

CPhill Nov 23, 2015
 #2
avatar+466 
+5

Thank you so much! It was extremely helpful and explanatory for me. cool Thanks again.

 Nov 23, 2015
 #3
avatar+130555 
+5

No problem, Shades.....glad it helped.....

 

 

 

cool cool cool

 Nov 23, 2015

1 Online Users