+0  
 
0
314
1
avatar

When changing the base of a logarithm, from 

 

logb(a) = log(a)/log(b)

 

Is it possible for the bases of the new logarithms to be any number? or only base 10?

 Aug 17, 2017
 #1
avatar+20847 
0

When changing the base of a logarithm, from 

logb(a) = log(a)/log(b)

Is it possible for the bases of the new logarithms to be any number? or only base 10?

 

You can use any number:

 

Change of Base Formula

The change of base formula for logarithms is:

\(\begin{array}{|rcll|} \hline \log_a{(x)} &=& \dfrac{ \log_b{(x)} } { \log_b{(a)} } \\ \hline \end{array}\)

 

Example:

\(\begin{array}{|rcll|} \hline \log_4{(16)} &=& \log_4{(4^2)} \\ &=& 2 \\\\ \log_4{(16)} &=& \frac{ \log_2{(16)} }{ \log_2{(4)} } \\ &=& \frac{ \log_2{(2^4)} }{ \log_2{(2^2)} } \\ &=& \frac{ 4\cdot \log_2{(2)} }{ 2\cdot \log_2{(2)} } \\ &=& \frac{ 4 }{ 2 } \\ &=& 2 \quad \checkmark \\ \hline \end{array} \)

 

 

laugh

 Aug 17, 2017

10 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.