+0  
 
0
260
1
avatar

When changing the base of a logarithm, from 

 

logb(a) = log(a)/log(b)

 

Is it possible for the bases of the new logarithms to be any number? or only base 10?

Guest Aug 17, 2017
 #1
avatar+19835 
0

When changing the base of a logarithm, from 

logb(a) = log(a)/log(b)

Is it possible for the bases of the new logarithms to be any number? or only base 10?

 

You can use any number:

 

Change of Base Formula

The change of base formula for logarithms is:

\(\begin{array}{|rcll|} \hline \log_a{(x)} &=& \dfrac{ \log_b{(x)} } { \log_b{(a)} } \\ \hline \end{array}\)

 

Example:

\(\begin{array}{|rcll|} \hline \log_4{(16)} &=& \log_4{(4^2)} \\ &=& 2 \\\\ \log_4{(16)} &=& \frac{ \log_2{(16)} }{ \log_2{(4)} } \\ &=& \frac{ \log_2{(2^4)} }{ \log_2{(2^2)} } \\ &=& \frac{ 4\cdot \log_2{(2)} }{ 2\cdot \log_2{(2)} } \\ &=& \frac{ 4 }{ 2 } \\ &=& 2 \quad \checkmark \\ \hline \end{array} \)

 

 

laugh

heureka  Aug 17, 2017

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.