If loga(s) = 5 and loga(t) = 10, then loga(s/t2) = ?
\(\begin{array}{|rcll|} \hline \log_a(s) &=& 5 \\ \log_a(t) &=& 10 \\\\ \log_a(s) - 2\cdot \log_a(t) &=& 5 - 2\cdot 10 \\ \log_a(s) - 2\cdot \log_a(t) &=& -15 \\ \log_a(s) -\log_a(t^2) &=& -15 \\\\ \mathbf{\log_a\left(\dfrac{s}{t^2} \right)} & \mathbf{=} & \mathbf{-15} \\ \hline \end{array}\)