+0  
 
0
103
2
avatar+86 

If loga(s) = 5 and loga(t) = 10, then loga(s/t2) = ?

SurpriseMe  Jun 27, 2018
 #1
avatar+91071 
+1

loga s  = 5    loga t   =10

 

In exponential form, we have

 

a^5  = s       and  a^10  =  t

 

So

 

loga (s / t^2 )  =

 

loga [a^5 / (a^10)^2 ]  =

 

loga [ a^5 / a^20 ]  =

 

loga  a^(-15)        and by a log property we can write

 

-15 * loga a  =

 

 ( Note  loga a   =  1  )

 

-15 * 1  =

 

-15

 

cool cool cool

CPhill  Jun 27, 2018
edited by CPhill  Jun 27, 2018
 #2
avatar+20148 
0

If loga(s) = 5 and loga(t) = 10, then loga(s/t2) = ?

 

\(\begin{array}{|rcll|} \hline \log_a(s) &=& 5 \\ \log_a(t) &=& 10 \\\\ \log_a(s) - 2\cdot \log_a(t) &=& 5 - 2\cdot 10 \\ \log_a(s) - 2\cdot \log_a(t) &=& -15 \\ \log_a(s) -\log_a(t^2) &=& -15 \\\\ \mathbf{\log_a\left(\dfrac{s}{t^2} \right)} & \mathbf{=} & \mathbf{-15} \\ \hline \end{array}\)

 

laugh

heureka  Jun 28, 2018

17 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.