+0  
 
+1
1167
3
avatar+5265 

logx143=0.96

 

Graph this on a graphing calculator and find the value of x where y drops below 30.

 Dec 13, 2016
edited by rarinstraw1195  Dec 14, 2016
 #1
avatar+118673 
0

You cannot graph it as it because there is no y

 

 

logx143=0.96

 

\(log_x143=0.96\\ \frac{log143}{logx}=0.96\\ logx=log(143)/0.96\\ 10^{logx}=10^{log(143)/0.96}\\ x=10^{log(143)/0.96}\\\)

10^(log(143)/0.96) = 175.84972994163184

 

\(x\approx 175.84972994163184\)

 

check

 

log(143,175.84972994163184) = 0.9599999999999999

 

you are not goint to get any closer than that :)

 Dec 14, 2016
 #3
avatar+5265 
0

*facepalm* my bad, forgot there's no y. Thanks Melody :)

rarinstraw1195  Dec 14, 2016
 #2
avatar
0

logx143=0.96

 

x^.96 = 143

x = 143^(1/0.96)

x =175.85, because

175.85^0.96 = 143

 Dec 14, 2016

2 Online Users

avatar